

## 

# **VIPA System 300S**



## SPEED7 - CP | 342-2IA71 | Manual

HB140E\_CP | RE\_342-2IA71 | Rev. 09/46 November 2009



#### Copyright © VIPA GmbH. All Rights Reserved.

This document contains proprietary information of VIPA and is not to be disclosed or used except in accordance with applicable agreements.

This material is protected by the copyright laws. It may not be reproduced, distributed, or altered in any fashion by any entity (either internal or external to VIPA), except in accordance with applicable agreements, contracts or licensing, without the express written consent of VIPA and the business management owner of the material.

For permission to reproduce or distribute, please contact: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach,Germany Tel.: +49 (91 32) 744 -0 Fax.: +49 9132 744 1864 EMail: info@vipa.de http://www.vipa.de

#### Note

Every effort has been made to ensure that the information contained in this document was complete and accurate at the time of publishing. Nevertheless, the authors retain the right to modify the information. This customer document describes all the hardware units and functions known at the present time. Descriptions may be included for units which are not present at the customer site. The exact scope of delivery is described in the respective purchase contract.

#### **CE Conformity**

Hereby, VIPA GmbH declares that the products and systems are in compliance with the essential requirements and other relevant provisions of the following directives:

- 2004/108/EC Electromagnetic Compatibility Directive
- 2006/95/EC Low Voltage Directive

Conformity is indicated by the CE marking affixed to the product.

#### **Conformity Information**

For more information regarding CE marking and Declaration of Conformity (DoC), please contact your local VIPA customer service organization.

#### Trademarks

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S and Commander Compact are registered trademarks of VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 is a registered trademark of profichip GmbH.

SIMATIC, STEP, SINEC, S7-300 and S7-400 are registered trademarks of Siemens AG.

Microsoft und Windows are registered trademarks of Microsoft Inc., USA.

Portable Document Format (PDF) and Postscript are registered trademarks of Adobe Systems, Inc.

All other trademarks, logos and service or product marks specified herein are owned by their respective companies.

#### Information product support

Contact your local VIPA Customer Service Organization representative if you wish to report errors or questions regarding the contents of this document. If you are unable to locate a customer service center, contact VIPA as follows:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax:+49 9132 744 1204 EMail: documentation@vipa.de

#### **Technical support**

Contact your local VIPA Customer Service Organization representative if you encounter problems with the product or have questions regarding the product. If you are unable to locate a customer service center, contact VIPA as follows:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telephone: +49 9132 744 1150/1180 (Hotline) EMail: support@vipa.de

## Contents

| About this m  | nanual                                | 1    |
|---------------|---------------------------------------|------|
| Safety inform | nation                                | 2    |
| Chapter 1     | Basics                                |      |
| Safety Info   | rmation for Users                     |      |
| General de    | scription of the System 300           |      |
| System 300    | DS                                    |      |
| Basics Inte   | rbus                                  |      |
| Chapter 2     | Assembly and installation guidelines. | 2-1  |
| Overview      |                                       | 2-2  |
| Installation  | dimensions                            | 2-3  |
| Installation  | Standard-Bus                          | 2-4  |
| Assembly S    | SPEED-Bus                             | 2-5  |
| Cabling       |                                       | 2-8  |
| Installation  | Guidelines                            | 2-12 |
| Chapter 3     | Hardware description                  |      |
| Properties.   |                                       |      |
| Structure     |                                       |      |
| Technical c   | lata                                  |      |
| Chapter 4     | Deployment                            |      |
| Fast introdu  | uction                                | 4-2  |
| Addressing    | at SPEED-Bus                          | 4-4  |
| Hardware o    | configuration                         |      |
| Register all  | location                              |      |
| Interbus co   | nfiguration                           |      |
| Diagnostics   | 5                                     |      |
| Firmware u    | Firmware update4                      |      |
| Example       |                                       |      |
| Appendix      |                                       | A-1  |
| Index         |                                       | A-1  |

## About this manual

This manual describes the Interbus master CP 342S-2IBS of the System 300S from VIPA. Here you may find besides of a product overview a detailed description of the modules.

# OverviewChapter 1: BasicsThis Basics contain hints for the usage and information about the project<br/>engineering of a SPEED7 system from VIPA.<br/>General information about the System 300S like dimensions and<br/>environment conditions will also be found.

#### Chapter 2: Assembly and installation guidelines

In this chapter you will find the information, required for the installation and the cabling of a process control with the components of the System 300.

#### Chapter 3: Hardware description

Here the hardware components of the CP 342S-2IBS are more described. The technical data are to be found at the end of the chapter.

#### Chapter 4: Deployment

Content of this chapter is the functionality of the CP 342S-2IBS for SPEED-Bus from VIPA. The module may only be used at a SPEED-Bus slot on the left side of the CPU.

The manual describes the CP 341S-2IBS from VIPA. It contains a **Objective and** description of the construction, project implementation and usage. contents This manual is part of the documentation package with order number HB140E CP and relevant for: Product Order number as of state: CP HW CP FW CP 342S-2IBS VIPA 342-2IA71 01 V100 **Target audience** The manual is targeted at users who have a background in automation technology. Structure of the The manual consists of chapters. Every chapter provides a self-contained description of a specific topic. manual Guide to the The following guides are available in the manual: document an overall table of contents at the beginning of the manual an overview of the topics for every chapter an index at the end of the manual. **Availability** The manual is available in: printed form, on paper • in electronic form as PDF-file (Adobe Acrobat Reader) Icons Important passages in the text are highlighted by following icons and headings: Headings Danger! Immediate or likely danger. Personal injury is possible. Attention! Damages to property is likely if these warnings are not heeded. Note! Supplementary information and useful tips.

## **Safety information**

Applications conforming with specifications The CP is constructed and produced for:

- for the deployment with VIPA SPEED-Bus
- communication and process control
- general control and automation applications
- industrial applications
- operation within the environmental conditions specified in the technical data
- installation into a cubicle



#### Danger!

This device is not certified for applications in

• in explosive environments (EX-zone)

Documentation

The manual must be available to all personnel in the

- project design department
- installation department
- commissioning
- operation



# The following conditions must be met before using or commissioning the components described in this manual:

- Modification to the process control system should only be carried out when the system has been disconnected from power!
- Installation and modifications only by properly trained personnel
- The national rules and regulations of the respective country must be satisfied (installation, safety, EMC ...)

Disposal

National rules and regulations apply to the disposal of the unit!

## Chapter 1 Basics

**Overview** This Basics contain hints for the usage and information about the project engineering of a SPEED7 system from VIPA.

General information about the System 300S like dimensions and environment conditions will also be found.

| Content | Торіс       |                              | Page |
|---------|-------------|------------------------------|------|
|         | Chapter 1   | Basics                       | 1-1  |
|         | Safety Info | ormation for Users           | 1-2  |
|         | General d   | escription of the System 300 |      |
|         | System 30   | 00S                          |      |
|         | Basics Inte | erbus                        | 1-7  |

## Safety Information for Users

Handling of electrostatic sensitive modules VIPA modules make use of highly integrated components in MOS-Technology. These components are extremely sensitive to over-voltages that can occur during electrostatic discharges.

The following symbol is attached to modules that can be destroyed by electrostatic discharges.



The Symbol is located on the module, the module rack or on packing material and it indicates the presence of electrostatic sensitive equipment.

It is possible that electrostatic sensitive equipment is destroyed by energies and voltages that are far less than the human threshold of perception. These voltages can occur where persons do not discharge themselves before handling electrostatic sensitive modules and they can damage components thereby, causing the module to become inoperable or unusable.

Modules that have been damaged by electrostatic discharges can fail after a temperature change, mechanical shock or changes in the electrical load.

Only the consequent implementation of protection devices and meticulous attention to the applicable rules and regulations for handling the respective equipment can prevent failures of electrostatic sensitive modules.

Modules must be shipped in the original packing material.

modules Measurements and

sensitive modules

alterations on

electrostatic

Shipping of

When you are conducting measurements on electrostatic sensitive modules you should take the following precautions:

- Floating instruments must be discharged before use.
- Instruments must be grounded.

Modifying electrostatic sensitive modules you should only use soldering irons with grounded tips.



#### Attention!

Personnel and instruments should be grounded when working on electrostatic sensitive modules.

System 300S

## **General description of the System 300**

The System 300The System 300 is a modular automation system for middle and high<br/>performance needs, which you can use either centralized or decentralized.<br/>The single modules are directly clipped to the profile rail and are connected<br/>together with the help of bus clips at the backside.<br/>The CPUs of the System 300 are instruction set compatible to S7-300 from<br/>Siemens.

System 300V VIPA differentiates between System 300V and System 300S.

System 300V

The System 300V allows you to resolve automation tasks centralized and decentralized. The single modules of the System 300V from VIPA are similar in construction to Siemens. Due to the compatible backplane bus, the modules from VIPA and Siemens can be mixed.

• System 300S

The System 300S extends the central area with high-speed CPUs that have the integrated SPEED7 chip. Additionally some CPU's have got a parallel SPEED-Bus that allows the modular connection of fast peripheral modules like IOs or bus master.



## System 300S

**Overview** 

The CPUs 31xS are based upon the SPEED7 technology. This supports the CPU at programming and communication by means of co-processors that causes a power improvement for highest needs.

Except of the basic variant, all SPEED7-CPUs are provided with a parallel SPEED-Bus that enables the additional connection of up to 10 modules from the SPEED-Bus periphery. While the standard peripheral modules are plugged-in at the right side of the CPU, the SPEED bus peripheral modules are connected via a SPEED-Bus bus connector at the left side of the CPU.



**CPU 31xS** The System 300S series consists of a number of CPUs. These are programmed in STEP<sup>®</sup>7 from Siemens. For this you may use WinPLC7 from VIPA or the Siemens SIMATIC manager.

CPUs with integrated Ethernet interfaces or additional serial interfaces simplify the integration of the CPU into an existing network or the connection of additional peripheral equipment.

The user application is stored in the battery buffered RAM or on an additionally pluggable MMC storage module.

Due to the automatic address allocation, the deployment of the CPUs 31xS allows to address 32 peripheral modules.

Additionally some SPEED7-CPUs have got a parallel SPEED-Bus that allows the modular connection of fast peripheral modules like IOs or bus master.

| SPEED-Bus                           | The SPEED-Bus is a 32Bit parallel bus developed from VIPA with a maximum data rate of 40MByte/s. Via the SPEED-Bus you may connect up to 10 SPEED-Bus modules to your CPU 31xS.                                                                    |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                     | In opposite to the "standard" backplane bus where the modules are plugged-in at the right side of the CPU by means of single bus connectors, the modules at the SPEED-Bus are plugged-in at the left side of the CPU via a special SPEED-Bus rail. |  |  |
|                                     | VIPA delivers profile rails with integrated SPEED-Bus for 2, 6 or 10 SPEED-Bus peripheral modules with different lengths.                                                                                                                          |  |  |
| SPEED-Bus<br>peripheral<br>modules  | The SPEED-Bus peripheral modules may exclusively plugged at the SPEED-Bus slots at the left side of the CPU. The following SPEED-Bus modules are in preparation:                                                                                   |  |  |
|                                     | • Fast fieldbus modules like Profibus DP, Interbus, CANopen master and CANopen slave                                                                                                                                                               |  |  |
|                                     | Fast CP 343 (CP 343 Communication processor for Ethernet)                                                                                                                                                                                          |  |  |
|                                     | • Fast CP 341 with double RS 422/485 interface                                                                                                                                                                                                     |  |  |
|                                     | <ul> <li>Fast digital input-/output modules (Fast Digital IN/OUT)</li> </ul>                                                                                                                                                                       |  |  |
| Memory<br>management                | Every CPU 31xS has an integrated work memory. During program run the total memory is divided into 50% for program code and 50% for data.                                                                                                           |  |  |
|                                     | Starting with CPU firmware 3.0.0 there is the possibility to extend the total memory to its maximum by means of a MCC memory extension card.                                                                                                       |  |  |
| Integrated<br>Profibus<br>DP master | The CPUs of the System 300S series with SPEED-Bus have an integrated Profibus DP master. Via the DP master with a data range of 1kByte for in-<br>and output you may address up to 124 DP slaves.                                                  |  |  |
|                                     | The project engineering takes place in WinPLC7 from VIPA or in the hardware configurator from Siemens.                                                                                                                                             |  |  |
| Integrated                          | Every CPU 31xS has an Ethernet interface for PG/OP communication. Via                                                                                                                                                                              |  |  |
| Ethernet PG/OP channel              | the "PLC" functions you may directly access the Ethernet PG/OP channel<br>and program res. remote control your CPU. A max. of 2 PG/OP<br>connections is available.                                                                                 |  |  |
|                                     | You may also access the CPU with a visualization software via these connections.                                                                                                                                                                   |  |  |

| Operation Security         | • Wiring by means of spring pressure connections (CageClamps) at the front connector                                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                            | Core cross-section 0.082.5mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                            | <ul> <li>Total isolation of the wiring at module change</li> </ul>                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                            | <ul> <li>Potential separation of all modules to the backplane bus</li> </ul>                                                                                                                                                                                                                                                                                                                                           |  |  |
|                            | <ul> <li>ESD/Burst acc. IEC 61000-4-2/IEC 61000-4-4 (up to level 3)</li> </ul>                                                                                                                                                                                                                                                                                                                                         |  |  |
|                            | <ul> <li>Shock resistance acc. IEC 60068-2-6 / IEC 60068-2-27 (1G/12G)</li> </ul>                                                                                                                                                                                                                                                                                                                                      |  |  |
| Environmental              | <ul> <li>Operating temperature: 0 +60°C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| conditions                 | <ul> <li>Storage temperature: -25 +70°C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                            | <ul> <li>Relative humidity: 5 95% without condensation</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                            | <ul> <li>Ventilation by means of a fan is not required</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Dimensions/                | Available lengths of the profile rail in mm: 160, 482, 530, 830 and 2000                                                                                                                                                                                                                                                                                                                                               |  |  |
| Weight                     | <ul> <li>Dimensions of the basic enclosure:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                            | 1tier width: (HxWxD) in mm: 40x125x120                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                            | 2tier width: (HxWxD) in mm: 80x125x120                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Compatibility              | Modules and CPUs of the System 300 from VIPA and Siemens may be used at the "Standard" bus as a mixed configuration.                                                                                                                                                                                                                                                                                                   |  |  |
|                            | The project engineering takes place in WinPLC7 from VIPA or in the hardware configurator from Siemens.                                                                                                                                                                                                                                                                                                                 |  |  |
|                            | The SPEED7 CPUs from VIPA are instruction compatible to the programming language STEP <sup>®</sup> 7 from Siemens and may be programmed via WinPLC7 from VIPA or via the Siemens SIMATIC manager.                                                                                                                                                                                                                      |  |  |
|                            | Here the instruction set of the S7-400 from Siemens is used.                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                            | Note!                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 1                          | Please do always use the <b>CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0)</b> from Siemens of the hardware catalog to project a SPEED7-CPU with SPEED-Bus from VIPA. For the project engineering, a thorough knowledge of the Siemens SIMATIC manager and the hardware configurator from Siemens is required!                                                                                                                 |  |  |
| Integrated<br>power supply | Every CPU res. bus coupler comes with an integrated power supply. The power supply has to be supplied with DC 24V. By means of the supply voltage, the bus coupler electronic is supplied as well as the connected modules via backplane bus. Please regard that the integrated power supply may supply the backplane bus the backplane bus (SPEED-Bus and Standard-Bus) depending on the CPU with a sum with max. 5A. |  |  |
|                            | The power supply is protected against inverse polarity and overcurrent.                                                                                                                                                                                                                                                                                                                                                |  |  |
|                            | Every SPEED-Bus rail has a plug-in option for an external power supply.<br>This allows you to raise the maximum current at the backplane bus for 5.5A.                                                                                                                                                                                                                                                                 |  |  |

## **Basics Interbus**

| General | Interbus is a pure master/slave system that has very few protocol overheads. For this reason it is well suited for applications on the sensor/actuator level. Interbus was developed by PHOENIX CONTACT, Digital Equipment and the Technical University of Lemgo during the 80s. The first system components became available in 1988. To this day the communication protocol has remained virtually unchanged. It is therefore means that it is entirely possible to connect devices of the first generation to the most recent master interfaces (generation 4). |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Interbus devices are subject to the DIN standard 19258 that defines levels 1 and 2 of the protocol amongst others.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Interbus as shift register Interbus is based upon a ring structure that operates as a cyclic shift register. Every Interbus module inserts a shift register into the ring. The number of I/O points supported by the module determines the length of this shift register. A ring-based shift register is formed due to the fact that all the devices are connected in series and that the output of the last shift register is returned to the bus master.

The length and the structure of this shift register depend on the physical construction of the entire Interbus system.

Interbus operates by means of a master-slave access method where the master also provides the link to any high-level control system. The ringstructure includes all connected devices actively in a closed communication loop.

In comparison to client-server protocols where data is only exchanged when a client receives a properly addressed command, Interbus communications is cyclic in nature and data is exchanged at constant intervals. Every data cycle addresses all devices on the bus.

• Max. 512 participants with 32byte I/O per station

- Up to 400m distance between 2 stations at 500kB
- Total distance up to 13km (Repeater function in every station)
- Removal res. addition of modules during runtime is not permitted
- Data consistency is secure for 1byte. To avoid inconsistencies use the *asynchronous* data exchange with consistency bit or the *interrupt controlled* synchronous pulse.



#### Note!

Before alterations you must disconnect the according bus coupler from voltage. Please take care to adjust the initialization in the master when changing the periphery!

#### Modes of

operation

Interbus has two modes of operation:

- ID cycle
   An ID cycle is issued when the Interbus system is being initialized and also upon request. During the ID cycle the bus master reads the ID register of every module connected to the bus to generate the process image.
- Data cycle

The actual transfer of data occurs during the data cycle. During the data cycle the input data from the registers of all devices is transferred to the master and the output data is transferred from the master to the devices. This is a full duplex data transfer.

ID cycle During the ID cycle that is executed when the Interbus system is being initialized the different modules connected to the bus identify themselves with their individual functionality and the word length. When the Interbus coupler is turned on, it determines its Interbus length during the initialization phase of the bus modules and generates the respective ID code. Depending on the configuration the Interbus coupler replies with a message identifying it as an analog or a digital remote bus device with variable word length.

The Interbus ID code consists of 2byte. The MSB (byte 2) describes the length of the data words that will be transferred. The LSB (byte 1) describes the type of bus module, i.e. the type of signal and other performance criteria

| Byte | Bit 7 Bit 0                                            |
|------|--------------------------------------------------------|
| 1    | Bit 1 Bit 0: Direction of data transfer:               |
|      | 00: not used                                           |
|      | 01: output                                             |
|      | 10: input                                              |
|      | 11: input/output                                       |
|      | Bit 3 Bit 2: terminal type                             |
|      | Bit 7 Bit 4: terminal class                            |
|      | The type and class are determined by the Interbus-Club |
| 2    | Bit 4 Bit 0: Data width 0 to 10 words (binary)         |
|      | Bit 7 Bit 5: reserved                                  |

Data cycle

Process data words also contain control and inspection information. This information is only transferred once at the beginning or at the end of the peripheral data of any data cycle. This is why this system is also referred to as a cumulative frame procedure.

The communication principle is independent of the type of data being transferred:

Process data that must be transferred to the periphery is stored in the output buffer of the master in the same sequence as the output stations are connected to the bus. The transfer occurs when the master shifts the "loop-back word" through the ring. Following the loop-back word, all the output data is placed on the bus.

... continue This means that the data is shifted through the shift register. The information from the process is returned as input data to the input buffer of the master at the same time as the output data is being sent.

The output data is located at the correct position in the shift registers of the different stations when the entire cumulative frame telegram has been sent and read back again. At this point, the master issues a special control command to the devices on the bus to indicate the end of the data transfer cycle.

When the data check sequence has been processed, output data for the process is transferred from the shift registers. This is stored in the devices connected to the bus and transferred to the respective periphery. At the same time, new information is read from the periphery into the shift registers of the input devices in preparation for the next input cycle.

This procedure is repeated on a cyclic basis. This means that the input and output buffers of the master are also updated cyclically. Interbus data communications is therefore full duplex in nature; i.e. both input data and output data are transferred during a single data cycle.



## Chapter 2 Assembly and installation guidelines

**Overview** In this chapter you will find the information, required for the installation and the cabling of a process control with the components of the System 300.

#### 

## **Overview**

General While the standard peripheral modules are plugged-in at the right side of the CPU, the SPEED-Bus peripheral modules are connected via a SPEED-Bus bus connector at the left side of the CPU.

> VIPA delivers profile rails with integrated SPEED-Bus for 2, 6 or 10 SPEED-Bus peripheral modules with different lengths.



Serial The single modules are directly installed on a profile rail and connected via the backplane bus coupler. Before installing the modules you have to clip Standard bus the backplane bus coupler to the module from the backside. The backplane bus coupler is included in the delivery of the peripheral modules.

Parallel With SPEED-Bus the bus connection happens via a SPEED-Bus rail integrated in the profile rail at the left side of the CPU. Due to the parallel SPEED-Bus SPEED-Bus not all slots must be occupied in sequence.

SLOT 1 for additional At SLOT 1 DCDC) you may plug either a SPEED-Bus module or an additional power supply.

Assembly possibilities

power supply

You may assemble the System 300 horizontally, vertically or lying.





| mbly |   |
|------|---|
| 0    | 1 |



Please regard the allowed environment temperatures:

- horizontal assembly: from 0 to 60°C
- vertical assembly: from 0 to 40°C
- lying assembly: from 0 to 40°C

## Installation dimensions



## **Installation Standard-Bus**

#### Approach

If you do not deploy SPEED-Bus modules, the assembly at the standard bus happens at the right side of the CPU with the following approach:



- Bolt the profile rail with the background (screw size: M6), so that you still have minimum 65mm space above and 40mm below the profile rail.
- If the background is a grounded metal or device plate, please look for a low-impedance connection between profile rail and background.
- Connect the profile rail with the protected earth conductor. For this purpose there is a bolt with M6-thread.
- The minimum cross-section of the cable to the protected earth conductor has to be 10mm<sup>2</sup>.



- Stick the power supply to the profile rail and pull it to the left side up to 5mm to the grounding bolt of the profile rail.
- Take a bus coupler and click it at the CPU from behind like shown in the picture.
- Stick the CPU to the profile rail right from the power supply and pull it to the power supply.
- Click the CPU downwards and bolt it like shown.
- Repeat this procedure with the peripheral modules, by clicking a backplane bus coupler, stick the module right from the modules you've already fixed, click it downwards and connect it with the backplane bus coupler of the last module and bolt it.





#### Danger!

- Before installing or overhauling the System 300, the power supplies must be disconnected from voltage (pull the plug or remove the fuse)!
- Installation and modifications only by properly trained personnel!

## **Assembly SPEED-Bus**

#### Pre-manufactured SPEED-Bus profile rail

For the deployment of SPEED-Bus modules, a pre-manufactured SPEED-Bus rail is required. This is available mounted on a profile rail with 2, 6 or 10 extension plug-in locations.



## Installation of the



- Bolt the profile rail with the background (screw size: M6), so that you still have minimum 65mm space above and 40mm below the profile rail.
- Please look for a low-impedance connection between profile rail and background



Connect the profile rail with the protected earth conductor.

The minimum cross-section of the cable to the protected earth conductor has to be  $10 \text{mm}^2$ .

#### **Profile rail**



| Order number    | SPEED-    | A      | В     | С     |
|-----------------|-----------|--------|-------|-------|
|                 | Bus slots |        |       |       |
| VIPA 390-1AB60  | -         | 160mm  | 140mm | 10mm  |
| VIPA 390-1AE80  | -         | 482mm  | 466mm | 8,3mm |
| VIPA 390-1AF30  | -         | 530mm  | 500mm | 15mm  |
| VIPA 390-1AJ30  | -         | 830mm  | 800mm | 15mm  |
| VIPA 390-9BC00* | -         | 2000mm | -     | 15mm  |
| VIPA 391-1AF10  | 2         | 530mm  | 500mm | 15mm  |
| VIPA 391-1AF30  | 6         | 530mm  | 500mm | 15mm  |
| VIPA 391-1AF50  | 10        | 530mm  | 500mm | 15mm  |

\* Unit pack 10 pieces

23



• Dismantle the according protection flaps of the SPEED-Bus plug-in locations with a screw driver (open and pull down).

For the SPEED-Bus is a parallel bus, not all SPEED-Bus plug-in locations must be used in series. Leave the protection flap installed at an unused SPEED-Bus plug-in location.

- At deployment of a DC 24V power supply, install it at the shown position at the profile rail at the left side of the SPEED-Bus and push it to the left to the isolation bolt of the profile rail.
- Fix the power supply by screwing.
- To connect the SPEED-Bus modules, plug it between the triangular positioning helps to a plug-in location marked with "SLOT ..." and pull it down.
- Only the "SLOT1 DCDC" allows you to plug-in either a SPEED-Bus module or an additional power supply.
- Fix the modules by screwing.







- To deploy the SPEED7-CPU exclusively at the SPEED-Bus, plug it between the triangular positioning helps to the plug-in location marked with "CPU SPEED7" and pull it down.
- Fix the CPU by screwing.

Please regard that not all CPU 31xS may be deployed at the SPEED-Bus!

Installation CPU with Standard-Bus-Modules





- Plug the CPU between the triangular positioning helps to the plug-in location marked with "CPU SPEED7" and pull it down.
  - Fix the CPU by screwing.

Installation Standard-Bus-Modules



• Repeat this procedure with the peripheral modules, by clicking a backplane bus coupler, stick the module right from the modules you've already fixed, click it downwards and connect it with the backplane bus coupler of the last module and bolt it.



#### Danger!

1 Nm

- Before installing or overhauling the System 300V, the power supplies must be disconnected from voltage (pull the plug or remove the fuse)!
- Installation and modifications only by properly trained personnel!

## Cabling

Overview

The power supplies and CPUs are exclusively delivered with CageClamp contacts. For the signal modules the front connectors are available from VIPA with screw contacts. In the following all connecting types of the power supplies, CPUs and input/output modules are described.



#### Danger!

- Before installation or overhauling, the power supplies must be disconnected from voltage (pull the plug or remove the fuse)!
- Installation and modifications only by properly trained personnel!

#### CageClamp technology (gray)

For the cabling of power supplies, bus couplers and parts of the CPU, gray connectors with CageClamp technology are used.

You may connect wires with a cross-section of 0.08mm<sup>2</sup> to 2.5mm<sup>2</sup>. You can use flexible wires without end case as well as stiff wires.



[1] Rectangular opening for screwdriver

[2] Round opening for wires

The picture on the left side shows the cabling step by step from top view.

- To conduct a wire you plug a fitting screwdriver obliquely into the rectangular opening like shown in the picture.
- To open the contact spring you have to push the screwdriver in the opposite direction and hold it.
- Insert the insulation striped wire into the round opening. You may use wires with a cross-section from 0.08mm<sup>2</sup> to 2.5mm<sup>2</sup>.
- By removing the screwdriver the wire is connected safely with the plug connector via a spring.

(3)

#### CageClamp technology (green)

(1)

(2)

(3

For the cabling of e.g. the power supply of a CPU, green plugs with CageClamp technology are deployed.

Here also you may connect wires with a cross-section of 0.08mm<sup>2</sup> to 2.5mm<sup>2</sup>. You can use flexible wires without end case as well as stiff wires.



- [1] Test point for 2mm test tip
- [2] Locking (orange) for screwdriver
- [3] Round opening for wires

The picture on the left side shows the cabling step by step from top view.

- For cabling you push the locking vertical to the inside with a suiting screwdriver and hold the screwdriver in this position.
- Insert the insulation striped wire into the round opening. You may use wires with a cross-section from 0.08mm<sup>2</sup> to 2.5mm<sup>2</sup>.
- By removing the screwdriver the wire is connected safely with the plug connector via a spring.



#### Note!

In opposite to the gray connection clamp from above, the green connection clamp is realized as plug that can be clipped off carefully even if it is still cabled.



Front connectors of the in-/output modules In the following the cabling of the three variants of the front-facing connector is shown:

For the I/O modules the following plugs are available at VIPA:



continued ...

... continue **20pole screw connection 40pole screw connection** VIPA 392-1AJ00 VIPA 392-1AM00 Push the release key at the front connector on Bolt the fixing screw of the front connector. the upper side of the module and at the same time push the front connector into the module until it locks. 2 TITLET TITLET 2 CITERING CONTRACTOR 0.4 ... 0.7 Nm Now the front connector is electrically connected with your module. Close the front flap. Fill out the labeling strip to mark the single channels and push the strip into the front flap.

HB140E - CP - RE\_342-2IA71 - Rev. 09/46

## **Installation Guidelines**

| General                            | The installation guidelines contain information about the interference free deployment of System 300 systems. There is the description of the ways, interference may occur in your control, how you can make sure the electromagnetic digestibility (EMC), and how you manage the isolation.                                                                                                                                                                                                                                                                |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What means<br>EMC?                 | Electromagnetic digestibility (EMC) means the ability of an electrical device, to function error free in an electromagnetic environment without being interferenced res. without interferencing the environment.<br>All System 300 components are developed for the deployment in hard industrial environments and fulfill high demands on the EMC. Nevertheless you should project an EMC planning before installing the components and take conceivable interference causes into account.                                                                 |
| Possible<br>interference<br>causes | <ul> <li>Electromagnetic interferences may interfere your control via different ways:</li> <li>Fields</li> <li>I/O signal conductors</li> <li>Bus system</li> <li>Current supply</li> <li>Protected earth conductor</li> </ul> Depending on the spreading medium (lead bound or lead free) and the distance to the interference cause, interferences to your control occur by means of different coupling mechanisms. One differs: <ul> <li>galvanic coupling</li> <li>capacitive coupling</li> <li>inductive coupling</li> <li>radiant coupling</li> </ul> |

**Basic rules for** In the most times it is enough to take care of some elementary rules to guarantee the EMC. Please regard the following basic rules when installing your PLC.

- Take care of a correct area-wide grounding of the inactive metal parts when installing your components.
  - Install a central connection between the ground and the protected earth conductor system.
  - Connect all inactive metal extensive and impedance-low.
  - Please try not to use aluminum parts. Aluminum is easily oxidizing and is therefore less suitable for grounding.
- When cabling, take care of the correct line routing.
  - Organize your cabling in line groups (high voltage, current supply, signal and data lines).
  - Always lay your high voltage lines and signal res. data lines in separate channels or bundles.
  - Route the signal and data lines as near as possible beside ground areas (e.g. suspension bars, metal rails, tin cabinet).
- Proof the correct fixing of the lead isolation.
  - Data lines must be laid isolated.
  - Analog lines must be laid isolated. When transmitting signals with small amplitudes the one sided lying of the isolation may be favorable.
  - Lay the line isolation extensively on an isolation/protected earth conductor rail directly after the cabinet entry and fix the isolation with cable clamps.
  - Make sure that the isolation/protected earth conductor rail is connected impedance-low with the cabinet.
  - Use metallic or metalized plug cases for isolated data lines.
- In special use cases you should appoint special EMC actions.
  - Wire all inductivities with erase links that are not addressed by the System 300V modules.
  - For lightening cabinets you should prefer incandescent lamps and avoid luminescent lamps.
- Create an homogeneous reference potential and ground all electrical operating supplies when possible.
  - Please take care for the targeted employment of the grounding actions. The grounding of the PLC is a protection and functionality activity.
  - Connect installation parts and cabinets with the System 300V in star topology with the isolation/protected earth conductor system. So you avoid ground loops.
  - If potential differences between installation parts and cabinets occur, lay sufficiently dimensioned potential compensation lines.

Isolation of<br/>conductorsElectrical, magnetic and electromagnetic interference fields are weakened<br/>by means of an isolation, one talks of absorption.

Via the isolation rail, that is connected conductive with the rack, interference currents are shunt via cable isolation to the ground. Hereby you have to make sure, that the connection to the protected earth conductor is impedance-low, because otherwise the interference currents may appear as interference cause.

When isolating cables you have to regard the following:

- If possible, use only cables with isolation tangle.
- The hiding power of the isolation should be higher than 80%.
- Normally you should always lay the isolation of cables on both sides. Only by means of the both-sided connection of the isolation you achieve a high quality interference suppression in the higher frequency area.

Only as exception you may also lay the isolation one-sided. Then you only achieve the absorption of the lower frequencies. A one-sided isolation connection may be convenient, if:

- the conduction of a potential compensating line is not possible
- analog signals (some mV res. µA) are transferred
- foil isolations (static isolations) are used.
- With data lines always use metallic or metalized plugs for serial couplings. Fix the isolation of the data line at the plug rack. Do not lay the isolation on the PIN 1 of the plug bar!
- At stationary operation it is convenient to strip the insulated cable interruption free and lay it on the isolation/protected earth conductor line.
- To fix the isolation tangles use cable clamps out of metal. The clamps must clasp the isolation extensively and have well contact.
- Lay the isolation on an isolation rail directly after the entry of the cable in the cabinet. Lead the isolation further on to the System 300V module and **don't** lay it on there again!



#### Please regard at installation!

At potential differences between the grounding points, there may be a compensation current via the isolation connected at both sides. Remedy: Potential compensation line

## Chapter 3 Hardware description

**Overview** Here the hardware components of the CP 342S-2IBS are more described. The technical data are to be found at the end of the chapter.

| Content | Торіс      |                      | Page |
|---------|------------|----------------------|------|
|         | Chapter 3  | Hardware description |      |
|         | Properties | -                    |      |
|         | Structure. |                      |      |
|         | Technical  | data                 | 3-6  |

## **Properties**

General

The CP 342S-2IBS in the following may only be used at the SPEED-Bus.



#### **CP 342S-2IBS**

- Dual Interbus master (IBS master) for SPEED-Bus.
- Up to 512 slaves connectable.
- Supports PCP communication 2.0 with bandwidths of 1, 2 and 4 words at 62 couplers with basic functions and 127 configurable couplers.
- Diagnostics via LEDs, diagnostics device (VIPA 342-0IA01) and DPM dual port memory.

| Туре         | Order No.                                                                 | Description                        |
|--------------|---------------------------------------------------------------------------|------------------------------------|
| CP 342S-2IBS | VIPA 342-2IA71                                                            | Dual Interbus master for SPEED-Bus |
| IBS-Diag     | BS-Diag VIPA 342-0IA01 Diagnostics device with F<br>VIPA Interbus master. |                                    |

#### Order data

## Structure

Interbus platform

As Interbus hardware platform, 2 Interbus master cards USC4-2 from Phoenix Contact are used.

The Interbus section manages every task concerning network management and diagnostics. Here the communication with the CPU happens via a **D**ual **p**ort **m**emory (DPM).

Among others, the DPM has the following interfaces for send and receive:

- SSGI (Standard Signal Interface) for the exchange of messages like e.g. request of services from the master
- DTA (Data) interface for the exchange of process data

5

**X2** O

IBS1

**X3** C

IBS2



#### Note!

Due to the fact that VIPA provides the same services for master and slave parameterization for this master, we refer at the according places to the extensive documentation of the services from Phoenix Contact.

| CP 342-2IBS | VIPA CP 342S-2IBS                 |     |
|-------------|-----------------------------------|-----|
| 342-2IA71   | RUN1 Interbus 1                   |     |
|             | ERR1                              |     |
|             | BSA1                              | _ 1 |
|             | PF1                               | 1   |
|             | HF1                               |     |
|             | RUN2 Interbus 2                   |     |
|             | ERR2                              |     |
|             | BSA2                              |     |
|             | PF2                               |     |
|             | HF2                               |     |
|             | VIPA 342-2IA71 $\frac{X 2}{3 _4}$ |     |
|             |                                   | _ 2 |
|             |                                   | - 3 |
|             |                                   | - 4 |
|             |                                   |     |

LEDs status indicators [1]

The following components are under the front flap

- [2] RJ45 jack to connect diagnostics device to IBS1
- [3] RJ45 jack to connect diagnostics device to IBS2
- [4] RS422 Interbus interface IBS1
- RS422 Interbus interface IBS2 [5]

LEDS The CP 342S-2IBS carries at each Interbus interface a number of LEDs that are available for diagnostic purposes on the bus and for displaying the local status. These give information according to the following pattern over the operating condition of the CP:

| RUN<br>green | ERR<br>red | BSA<br>yellow | PF<br>yellow | HF<br>yellow | Meaning                                                             |
|--------------|------------|---------------|--------------|--------------|---------------------------------------------------------------------|
| 0            | 0          | 0             | 0            | 0            | Module is not power supplied                                        |
| •            | 0          | 0             | 0            | 0            | Interbus is ready for data transfer                                 |
| ¢            | 0          | 0             | 0            | 0            | Interbus is active, bus parameters are transferred, bus is checked. |
| ¢            | •          | 0             | 0            | 0            | At least 1 slave is missing or bus error.                           |
| x            | •          | •             | 0            | 0            | At least 1 segment of the subordinate bus is switched off.          |
| •            | •          | 0             | •            | 0            | Peripheral fault at a subordinate bus member                        |
| x            | •          | 0             | 0            | •            | Error in CP 342S-2IBS                                               |
| on: ●        |            | off: O        |              | flashing     | g: ☆ irrelevant: <b>X</b>                                           |

**Power supply** The Interbus master gets its power supply via the SPEED-Bus. Here the current consumption is max. 830mA.

**RJ45 diagnostics jack** For each Interbus master part there is a RJ45 jack below the front flap to connect the VIPA diagnostics device with order number VIPA 342-0IA01. The jack has the following pin assignment:

8pin RJ45 jack:



| Signal | Meaning                                                             |
|--------|---------------------------------------------------------------------|
| GND    | Ground                                                              |
| PCS3   | Chip select 3                                                       |
| MISO   | Serial data input                                                   |
| MOSI   | Serial data output                                                  |
| SCK    | Clock                                                               |
| PCS2   | Chip select 2                                                       |
| VCC    | 5V                                                                  |
| n.c.   | not connected                                                       |
|        | Signal<br>GND<br>PCS3<br>MISO<br>MOSI<br>SCK<br>PCS2<br>VCC<br>n.c. |
**RS422 Interbus**The interfaces RS422 for each IBS master for the Interbus connections are<br/>located on the front flap of the module.

Although Interbus is substantial build-up in line structure (only one line from the master to the last module) it is in principle a ring structure where the for- and backwards conductor are together in one lead. The ring is closed by the last participant. The most devices are closing the ring automatically when no continuative lead is connected.

For master-slave and slave-slave connection the same connection cable is used. Due to the ring structure and the common logic ground, the cable consists of 5 cores and has the following assignment:



9pin D-type jack (IBS 1 and IBS 2):





#### Note!

Please take care that the plug for the "continuative interface" has a bridge between Pin 5 and 9, otherwise the following slaves are not recognized!

Isolation

For Interbus distant bus segments cover a wide volume expansion, the single segments must be isolated to avoid potential procrastination. According to the recommendation of the Interbus-Club, an isolation of the incoming distant bus interface from the rest of the system is sufficient. The continuative distant bus interface is thus at the potential of the rest of the system and the backplane bus.

Please use metal plug casings and put the cable screen on the plug casing.

## **Technical data**

| Electrical data                     | VIPA 342-2IA71           |                         |
|-------------------------------------|--------------------------|-------------------------|
| Power supply                        | via backplane bus        |                         |
| Current consumption                 | max. 830mA               |                         |
| Power dissipation                   | 4.5W                     |                         |
| Isolation                           | ≥ AC 500V                |                         |
| Status indicators                   | via LEDs on the front    |                         |
| Connections/interfaces              | 9pin D-type socket       | IBS1 connector          |
|                                     | 9pin D-type socket       | IBS2 connector          |
|                                     | RJ45 socket              | Diagnostic connection 1 |
|                                     | RJ45 socket              | Diagnostic connection 2 |
| Interbus interfaces                 | IBS1 and IBS2            |                         |
| Connection                          | 9pin D-type socket       |                         |
| Network topology                    | Linear with integrated r | eturn circuit           |
| Medium                              | Screened twisted pair of | cable                   |
| Data transfer rate                  | 500kBaud                 |                         |
| Total length                        | 12.8km (400m betweer     | n 2 stations)           |
| Max. no. of stations                | 512                      |                         |
| Combination with peripheral modules |                          |                         |
| Max. no of slaves                   | 512 each Interbus mas    | ster                    |
| Max. no. of input bytes             | 32byte each station      |                         |
| Max. no. of output bytes            | 32byte each station      |                         |
| Dimensions and weight               |                          |                         |
| Dimensions (WxHxD) in mm            | 40x125x120               |                         |
| Weight                              | 240g                     |                         |

## Chapter 4 Deployment

Overview

Content of this chapter is the functionality of the CP 342S-2IBS for SPEED-Bus from VIPA. The module may only be used at a SPEED-Bus slot on the left side of the CPU.

# ContentTopicPageChapter 4Deployment4-1Fast introduction4-2Addressing at SPEED-Bus4-4Hardware configuration4-5Register allocation4-9Interbus configuration4-15Diagnostics4-28Firmware update4-31Example4-33

## **Fast introduction**

# **Overview** The integration of the CP into your SPS system should take place with the following proceeding:

- Assembly and commissioning
- Hardware configuration (integration CP in CPU)
- Communication with the user program

Assembly and commissioning

- Install your SPEED-Bus system with a SPEED7 CPU and a CP 342S-2IBS.
- Wire-up the system. A detailed description about this may be found in the chapter "Assembly and installation guidelines".
- Switch power ON.  $\rightarrow$  After a short boot time the CP is in the system.
- Start the Siemens SIMATIC manager with an online connection to the CPU. More about this may be found in the manual of the CPU.



#### Note!

For the deployment of the System 300S modules at the SPEED-Bus you have to include the System 300S modules into the hardware catalog via the GSD-file SPEEDBUS.GSD from VIPA.

Hardware configuration

- Install the SPEEDBUS.GSD from VIPA.
- For hardware configuration jump within your project to the hardware configurator of the Siemens SIMATIC manager.
- Insert a profile rail
- Place the following Siemens CPU at slot 2: CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) and parameterize the CPU if necessary.
- If there are modules at the standard bus right beside the CPU and parameterize the modules if necessary.

... continue Hardware configuration The project engineering of the SPEED-Bus modules happens by means of a virtual Profibus DP master system. For this, place as last module a DP master (342-5DA02 V5.0) with master system.

- To this master system you assign every SPEED-Bus module e.g. IBS master as VIPA\_SPEEDBUS slave.
- Set as Profibus address the slot no. (100...110) of the module and place the according module from the hardware catalog of VIPA\_SPEEDBUS to slot 0 of the slave system.
- In this way place the SPEED-Bus CP 342-2IA71. In the hardware catalog is a CP 342-2IA71 at VIPA\_SPEEDBUS available.

## Communication with the user program

For the processing of the connecting jobs at PLC side a user program is necessary in the CPU. Here VIPA specific blocks are to be used. These blocks may be found at www.vipa.de at *Downloads* > *VIPA LIB* as library for download.

Please regard for each of the IBS master you have to create a work DB. The user program should have the following structure:



## Addressing at SPEED-Bus

| Overview                                         | To provide specific addressing of the installed peripheral modules, certain addresses must be allocated in the CPU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | With no hardware configuration present, the CPU assigns automatically peripheral I/O addresses during boot procedure depending on the plug-in location amongst others also for plugged modules at the SPEED-Bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Maximal pluggable<br>modules                     | In the hardware configurator from Siemens up to 8 modules per row may be<br>parameterized. At deployment of SPEED7 CPUs up to 32 modules at the<br>standard bus and 10 further modules at the SPEED-Bus may be controlled.<br>CPs and DP masters that are additionally virtual configured at the standard<br>bus are taken into the sum of 32 modules at the standard bus.<br>For the project engineering of more than 8 modules you may use virtual<br>line interface connections. For this you set in the hardware configurator the<br>module IM 360 from the hardware catalog to slot 3 of your 1. profile rail.<br>Now you may extend your system with up to 3 profile rails by starting each<br>with an IM 361 from Siemens at slot 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Define addresses<br>by hardware<br>configuration | You may access the modules with read res. write accesses to the peripheral bytes or the process image.<br>To define addresses a hardware configuration via a virtual Profibus system by including the SPEEDBUS.GSD may be used. For this, click on the properties of the according module and set the wanted address.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Automatic                                        | If you do not like to use a hardware configuration, an automatic addressing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| addressing                                       | At the automatic address allocation DIOs are mapped depending on the slot location with a distance of 4byte and AIOs, FMs, CPs with a distance of 256byte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  | Depending on the slot location the start address from where on the according module is stored in the address range is calculated with the following formulas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | DIOs: Start address = 4·(slot -101)+128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                  | AIOs, FMs, CPs: Start address = 256 (slot -101)+2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | ,102 ,101 Slot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  | 104 103 102 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  | Start Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                  | Address         Image: Constraint of the state of t |

## Hardware configuration

**Preconditions** The hardware configurator is part of the Siemens SIMATIC manager. It serves the project engineering. The modules, which may be configured here, are listed in the hardware catalog.

For the deployment of the System 300S modules at the SPEED-Bus you have to include the System 300S modules into the hardware catalog via the GSD-file SPEEDBUS.GSD from VIPA.



#### Note!

For the project engineering a thorough knowledge of the Siemens SIMATIC manager and the hardware configurator from Siemens is required!

# Include the SPEED7-GSD-file

The GSD (**G**eräte-**S**tamm-**D**atei) is online available in the following language versions. Further language versions are available on inquires.

| Name         | Language         |
|--------------|------------------|
| SPEEDBUS.GSD | german (default) |
| SPEEDBUS.GSG | german           |
| SPEEDBUS.GSE | english          |

The GSD files may be found at the service area of www.vipa.de.

The integration of the SPEEDBUS.GSD takes place with the following proceeding:

- Browse to www.vipa.de.
- Click to Service > Downloads > GSD files.
- Download the file *Cx000023\_Vxxx*.
- Extract the file to your work directory. The SPEEDBUS.GSD is stored in the directory *VIPA\_System\_300S*.
- Start the hardware configurator from Siemens.
- Close every project.
- Select **Options** > Install new GSD-file.
- Navigate to the directory *VIPA\_System\_300S* and select "SPEEDBUS.GSD".

The modules of the System 300S from VIPA are now included in the hardware catalog at *Profibus-DP / Additional field devices / I/O / VIPA\_SPEEDBUS*.

**Steps of project engineering** The following text describes the approach of the project engineering of the CP for SPEED-Bus in the hardware configurator from Siemens at an abstract sample.

The project engineering is separated into the following parts:

- Project engineering standard bus
- Project engineering SPEED-Bus as virtual Profibus network



Project engineering of the modules at the standard bus

- Start the hardware configurator from Siemens with a new project and insert a profile rail from the hardware catalog.
- Place the following Siemens CPU at slot 2: CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0)
- Parameterize the CPU where appropriate. The parameter window opens by a double click on the according module.

If there are modules at the standard bus right beside the CPU, these are configured with the following approach:

- Include your System 300 modules at the standard bus in the plugged sequence starting with slot 4.
- Parameterize the modules where appropriate. The parameter window opens by a double click on the according module.
- Since as many as 32 modules may be addressed by the SPEED7 CPU in one row, but only 8 modules are supported by the Siemens SIMATIC manager, the IM 360 of the hardware catalog can be used as a virtual bus extension during project engineering. Here 3 further extension racks can be virtually connected via the IM 361. Bus extensions are always placed at slot 3.



Project engineering SPEED-Bus as virtual Profibus network The project engineering of the SPEED-Bus modules happens by means of a virtual Profibus DP master system. For this, place as last module a DP master (342-5DA02 V5.0) with master system.

For the deployment of the System 300S modules at the SPEED-Bus the inclusion of the System 300S modules into the hardware catalog via the GSD-file SPEEDBUS.GSD from VIPA is required.

After the installation of the SPEEDBUS.GSD you may locate at *Profibus DP / Additional field devices / I/O / VIPA\_SPEEDBUS* the DP slave system VIPA\_SPEEDBUS.

Now include for the CPU and <u>every</u> module at the SPEED-Bus a slave system "VIPA\_SPEEDBUS".

Set as Profibus address the slot no. (100...110) of the module and place the according module from the hardware catalog of VIPA\_SPEEDBUS to slot 0 of the slave system.

In this way place the SPEED-Bus CP 342-2IA71. In the hardware catalog VIPA\_SPEEDBUS a CP 342-2IA71 is available.



The according module is to be taken over from the HW Catalog of VIPA\_SPEEDBUS to slot 0.

| Properties<br>CP 342-2IA71 | The properties of the CP may be accessed by a double click at the CP 342-<br>2IA71 within your project in the hardware configurator.<br>Every parameter of the CP may be accessed by the registers <i>Address/ID</i><br>and <i>Parameter Assignment</i> .                                                                                                                                                                                                                                |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address/ID                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Output<br>Input            | By presetting a start address for the input respectively output area the beginning of the address area of the CPU may be determined, which is mapped by the module. Please regard that the base address for input and output are identical.<br>The module occupies 68byte. Here each IBS master part occupies 34byte.<br>The corresponding address value is necessary for integration in the user program. To access the IBS2 master you have to add 34 to the respective address value. |
| Parameter<br>Assignment    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Offset IO address          | By presetting the offset address, the addresses entered at Address/ID are incremented with this offset value.<br>So the CP module may be mapped to an address area, which may not be reached during configuration by the Siemens SIMATIC manager.                                                                                                                                                                                                                                        |

System dependent address overlaps may not be recognized.

## **Register allocation**

LADDR ofThe structure of the Interbus master register is shown at the following<br/>table.IBS1 and IBS2The structure of the Interbus master register is shown at the following<br/>table.

To access the register of IBS1 for *LADDR* the preset address of the hardware configuration is to be used. To access the IBS2 you have to add to *LADDR* of IBS1 34byte.

Overview

| Address  | Assignment                           | Direction    |
|----------|--------------------------------------|--------------|
| LADDR    | Interrupt register                   | CPU > Master |
| LADDR+1  | Interrupt register                   | Master > CPU |
| LADDR+2  | SSGI acknowledge                     | Master > CPU |
| LADDR+4  | SSGI notification                    | Master > CPU |
| LADDR+6  | SSGI result                          | Master > CPU |
| LADDR+8  | SSGI status                          | Master > CPU |
| LADDR+10 | SSGI start                           | CPU > Master |
| LADDR+12 | reserved                             | -            |
| LADDR+14 | Standard function parameter register | CPU > Master |
| LADDR+16 | Standard function start register     | CPU > Master |
| LADDR+18 | Standard function status register    | Master > CPU |
| LADDR+20 | Master diagnosis parameter register  | Master > CPU |
| LADDR+22 | Master diagnosis status register     | Master > CPU |
| LADDR+24 | reserved                             | -            |
| LADDR+26 | Slave diagnosis status register      | Master > CPU |
| LADDR+28 | Configuration register               | Master > CPU |
| LADDR+30 | reserved                             | -            |
| LADDR+32 | Status sysfail register              | Master > CPU |

Interrupt registerVia this register and the register "Interrupt Register Master > CPU"CPU > Masterinterrupt requests for the synchronous operating mode (FC 206 - IRQ\_RW)(LADDR)are created.

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| Х | Х | Х | Х | Х | Х | Х | Х |

Possible contents of the register: APPLICATION\_READY\_COMMAND 0Eh

| Interrupt register<br>Master > CPU<br>(LADDR+1) | This reg<br>during t<br>"Interrup<br>synchro<br>finished | gister<br>he bo<br>ot Reo<br>nous<br>self to | serv<br>oot se<br>gister<br>ope<br>est, t | res t<br>eque<br>CPU<br>ratin<br>he IE | hes<br>nce.<br>J > I<br>g m<br>3S m | ynch<br>Add<br>Maste<br>ode.<br>astei | roniz<br>itiona<br>er" fo<br>Aft<br>r writ | zatio<br>ally i<br>or cr<br>er F<br>tes th | n be<br>t ser<br>eatio<br>Powe<br>ne va | twee<br>ves f<br>n of<br>r-up-<br>llue ( | en C<br>toget<br>inter<br>-Res<br>C3h i | PU a<br>ther<br>rupt<br>et a<br>into t | and<br>with<br>requ<br>nd<br>his r | IBS<br>the<br>lests<br>succ<br>egist | maste<br>registe<br>for the<br>essfully<br>er. |
|-------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------|--------------------------------------|------------------------------------------------|
|                                                 | 7 6<br>x x                                               | 5<br>X                                       | 4<br>X                                    | 3<br>x                                 | 2<br>x                              | 1<br>x                                | 0<br>X                                     |                                            |                                         |                                          |                                         |                                        |                                    |                                      |                                                |
|                                                 | Possible                                                 | e cont                                       | ents                                      | of th                                  | e reg                               | gister                                | :                                          |                                            |                                         |                                          |                                         |                                        |                                    |                                      |                                                |
|                                                 | MASTE                                                    | R_RE                                         | ADY                                       | _co                                    | MMA                                 | ٩ND                                   |                                            |                                            | C3h                                     |                                          |                                         |                                        |                                    |                                      |                                                |
|                                                 | DATA_(                                                   | CYCL                                         | E_RE                                      | EAD                                    | Y_CC                                | DMM                                   | ANC                                        | )                                          | 10h                                     |                                          |                                         |                                        |                                    |                                      |                                                |
| SSGI acknowledge<br>Master > CPU<br>(LADDR+2)   | 15 14<br>res. res                                        | 13<br>6. res.                                | 12<br>res.                                | 11<br>res.                             | 10<br>res.                          | 9<br>res.                             | 8<br>x                                     | 7<br>res.                                  | 6<br>res.                               | 5<br>res.                                | 4<br>res.                               | 3<br>res.                              | 2<br>res.                          | 1<br>res.                            | 0<br>res.                                      |
| ()                                              | Bit 8:                                                   | Ackn<br>Sign                                 | iowle<br>al <b>I</b> nt                   | dge-<br>erfac                          | Bit f<br>æ)                         | or th                                 | e m                                        | essa                                       | ge e                                    | xcha                                     | ange                                    | via                                    | SSG                                | 61 ( <b>S</b> t                      | andaro                                         |
| CCCI notification                               | 15 1/                                                    | 1 13                                         | 12                                        | 11                                     | 10                                  | Q                                     | 8                                          | 7                                          | 6                                       | 5                                        | 1                                       | 3                                      | 2                                  | 1                                    | 0                                              |
| SSGI notification<br>Master > CPU               | res. res                                                 | 6. res.                                      | res.                                      | res.                                   | res.                                | res.                                  | X                                          | res.                                       | res.                                    | res.                                     | res.                                    | res.                                   | ∠<br>res.                          | res.                                 | res.                                           |
| (LADDR+4)                                       | Bit 8:                                                   | Notif                                        | icatic                                    | on-Bi                                  | t for                               | the n                                 | ness                                       | age                                        | exch                                    | ange                                     | e via                                   | SSG                                    | 91                                 |                                      |                                                |
| SSGI result                                     | 15 14                                                    | 13                                           | 12                                        | 11                                     | 10                                  | 9                                     | 8                                          | 7                                          | 6                                       | 5                                        | 4                                       | 3                                      | 2                                  | 1                                    | 0                                              |
| Master > CPU                                    | res. res                                                 | s. res.                                      | res.                                      | res.                                   | res.                                | res.                                  | Х                                          | res.                                       | res.                                    | res.                                     | res.                                    | res.                                   | res.                               | res.                                 | х                                              |
| (LADDR+6)                                       | Bit 0:<br>Bit 8:                                         | Error<br>Resu                                | <sup>r</sup> duri<br>ult-Bit              | ng ai<br>: for t                       | utom<br>the n                       | atic (<br>nessa                       | confi<br>age (                             | igura<br>exch                              | ition<br>ange                           | e via                                    | SSG                                     | il                                     |                                    |                                      |                                                |
| SSGI status                                     | 15 14                                                    | 13                                           | 12                                        | 11                                     | 10                                  | 9                                     | 8                                          | 7                                          | 6                                       | 5                                        | 4                                       | 3                                      | 2                                  | 1                                    | 0                                              |
| Master > CPU<br>(LADDR+8)                       | res. res                                                 | 6. res.                                      | res.                                      | res.                                   | res.                                | res.                                  | X                                          | res.                                       | res.                                    | res.                                     | res.                                    | res.                                   | res.                               | res.                                 | x                                              |
|                                                 | BILU.                                                    | 0. A                                         |                                           | alic s                                 | start-                              | up is                                 |                                            | exec                                       | uted                                    | i al li<br>ibio f                        | การ แ<br>มีกระเ                         | me                                     |                                    |                                      |                                                |
|                                                 | Bit 8:                                                   | Statu                                        | us-Bit                                    | for t                                  | the n                               | nessa                                 | age                                        | exch                                       | ange                                    | e via                                    | SSG                                     | il                                     |                                    |                                      |                                                |
| SSGI start                                      | 15 14                                                    | 13                                           | 12                                        | 11                                     | 10                                  | 9                                     | 8                                          | 7                                          | 6                                       | 5                                        | 4                                       | 3                                      | 2                                  | 1                                    | 0                                              |
| CPU > Master                                    | res. res                                                 | s. res.                                      | res.                                      | res.                                   | res.                                | res.                                  | X                                          | res.                                       | res.                                    | res.                                     | res.                                    | res.                                   | res.                               | res.                                 | x                                              |
| (LADDR+10)                                      | Bit 0:                                                   | 0: Ai<br>1: Ai                               | utom<br>utom                              | atic s<br>atic s                       | start-<br>start-                    | up is<br>up is                        | not<br>exe                                 | exec                                       | cuted<br>d at t                         | l at tl<br>this t                        | his ti<br>ime                           | me                                     |                                    |                                      |                                                |
|                                                 | Bit 8:                                                   | Statu                                        | us-Bit                                    | for t                                  | the n                               | ressa                                 | age                                        | exch                                       | ange                                    | e via                                    | SSG                                     | il                                     |                                    |                                      |                                                |
| Standard funct                                  | The rec                                                  | jister                                       | is us                                     | sed t                                  | oy th                               | e Cl                                  | ⊃U f                                       | for tr                                     | ansn                                    | nissio                                   | on o                                    | f pai                                  | rame                               | eters                                | for the                                        |
| param. register<br>CPU > Master                 | standar                                                  | d func                                       | tions                                     | that                                   | are a                               | activa                                | ted                                        | with                                       | the s                                   | tand                                     | ard f                                   | uncti                                  | on st                              | art re                               | egister.                                       |
| (LADDR+14)                                      | 15 14                                                    | 13                                           | 12                                        | 11                                     | 10                                  | 9                                     | 8                                          | 7                                          | 6                                       | 5                                        | 4                                       | 3                                      | 2                                  | 1                                    | 0                                              |
|                                                 | х х                                                      | х                                            | Х                                         | х                                      | х                                   | х                                     | Х                                          | х                                          | х                                       | х                                        | х                                       | х                                      | х                                  | х                                    | х                                              |

Standard funct.With the help of this registers and the standard functions parameterstart registerWith the help of this registers and the standard functions parameterCPU > Masteroften used commands or command sequences may be executed with the(LADDR+16)two registers. This minimizes the efforts for service requests.

| 15 | 14 | 13   | 12   | 11   | 10   | 9    | 8    | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|------|------|------|------|------|------|------|---|---|---|---|---|---|---|
| Х  | х  | res. | Х | Х | х | Х | Х | Х | Х |

- Bit 0 Start bit Start\_Data\_Transfer\_Req Starts the data transfer. *Precondition:* IBS master is in state ACTIVE *Parameter:* none
- Bit 1 Start bit Alarm\_Stop\_Req, Activate\_Configuration\_Req Interrupts the data transfer, sets the outputs of all IBS stations to "0" and activates a new configuration frame. Afterwards the IBS master is in state ACTIVE. *Parameter:* Number of the configuration frame to be loaded (e.g. "1")
- Bit 2 Start bit Confirm\_Diagnostics\_Req This bit updates the contents of the diagnosis register and the diagnosis monitors.
- Bit 3 Start bit Control\_Active\_Configuration\_Req Off This bit allows you to shut down INTERBUS segments. *Parameter:* The segment-no. has to be stored in the high
  - The segment-no. has to be stored in the higher valued byte and the position in the lower valued byte. At shut-down of a local bus participant, all stations in the according local bus are shut down. When entering a distant bus station or a bus coupler, besides of the concerning device also the continuative IBS interface is shut down and thus all further IBS stations.
- Bit 4 Start bit Control\_Active\_Configuration\_Req On This bit re-activates IBS segments that have been shut down before. *Parameter:* See Bit 3
- Bit 5 Start bit Control\_Active\_Configuration\_Req Disable The station set as parameter is toggled in-active within the configuration frame. It may also physically not remain within the data ring and has to be bridged manually. *Parameter:* The segment-no. has to be stored in the higher valued byte and the position in the lower valued byte.
- Bit 6 Start bit Control\_Active\_Configuration\_Req Enable The station set as parameter is toggled active again within the configuration frame. It must also physically included back into the data ring. *Parameter:* See Bit 5
- Bit 14 Application-Busy-Bit (at bus synchronous operating mode) res. Data-Cycle-Activate-Bit (at program synchronous operating mode)
- Bit 15 Cons-Activate-Bit for the consistency lock

The bits 14 and 15 serve the processing of protocols for the process data exchange between the IBS master and the CPU.

#### Standard funct.status register Master > CPU (LADDR+18)

The bits 0...6 of this registers are used by the IBS master to monitor and control the processing of standard functions activated in the standard functions start register. Bit 15 serves the processing of a protocol for the process data exchange between IBS master and the CPU.

| 15 | 14   | 13   | 12   | 11   | 10   | 9    | 8    | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|------|------|------|------|------|------|------|------|---|---|---|---|---|---|---|
| Х  | res. | Х | Х | х | х | Х | Х | Х |

- Bit 0 : Status bit Start\_Data\_Transfer\_Request
- Bit 1 : Status bit Alarm\_Stop\_Request, Activate\_Configuration\_Request
- Bit 2 : Status bit Confirm\_Diagnostics\_Request
- Bit 3 : Status bit Control\_Active\_Configuration\_Req Off
- Bit 4 : Status bit Control\_Active\_Configuration\_Req On
- Bit 5 : Status bit Control\_Active\_Configuration\_Req Disable
- Bit 6 : Status bit Control\_Active\_Configuration\_Req Enable
- Bit 15: Cons-State-Bit for consistency lock

Execution of a standard function with parameter transfer

| Start bit in<br>StandardfktStart-Reg.           | Controlled by<br>CPU        |                             |
|-------------------------------------------------|-----------------------------|-----------------------------|
| Statusb bit in<br>StandardfktStatus-Reg.        | Controlled by<br>IBS Master |                             |
| Result bit im<br>Master-Diagnose-Status-Reg.    |                             | Controlled by<br>IBS Master |
| Parameter value in<br>StandardfktParameter-Reg. | Parameter value             |                             |

The diagram in the picture above shows the handshake mechanism at usage of the standard functions. A "0" in Bit 10 (RESULT) of the master diagnosis status register shows that the standard function has been finished successful.

| Master diag.               | 15            | 14           | 13             | 12                         | 11           | 10           | 9              | 8            | 7          | 6             | 5             | 4             | 3            | 2             | 1              | 0             |            |
|----------------------------|---------------|--------------|----------------|----------------------------|--------------|--------------|----------------|--------------|------------|---------------|---------------|---------------|--------------|---------------|----------------|---------------|------------|
| param register             | x             | x            | x              | x                          | x            | x            | x              | x            | x          | X             | x             | x             | x            | x             | x              | x             |            |
| Master > CPU<br>(LADDR+20) | This<br>the e | regis        | ster r<br>loca | noni <sup>:</sup><br>ation | tors (       | depe<br>e co | ndin<br>nten   | g on<br>t of | the<br>the | type<br>reais | of tł<br>ster | ne er<br>is m | ror t<br>ana | he e<br>ged   | rror (<br>bv t | code<br>he II | or<br>BS   |
|                            | mast          | er. S        | Some           | e erro                     | or typ       | oes o        | ause           | e ado        | ditior     | nal ei        | ntries        | sint          | the <i>É</i> | E <i>xter</i> | n <i>ded</i>   | <i>mas</i>    | <i>ter</i> |
|                            | <i>diagi</i>  | <i>nosis</i> | <i>pa</i>      | <i>rame</i>                | e <i>ter</i> | <i>regis</i> | s <i>ter</i> . | The          | e co       | ntent         | ts o          | fth           | e ex         | xteno         | ded            | mas           | ter        |
|                            | diagr         | nosis        | para           | amet                       | er re        | giste        | er is t        | to be        | four       | nd as         | s wor         | dat           | addr         | ress          | 168.           | 0 in t        | ter        |

work DB.

Master diag<br/>status registerThis register contains information about the state of the IBS master. The<br/>table contains the meaning of the bits when set ("1"). The content of the<br/>registers is managed by the IBS master. In case of an error additional<br/>information is available in the master diagnosis parameter register and in<br/>the extended master diagnosis parameter register.

| 15   | 14 | 13 | 12   | 11   | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|----|----|------|------|----|---|---|---|---|---|---|---|---|---|---|
| res. | Х  | Х  | res. | res. | Х  | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х |

| Bit 0 (USER)         | User/Parameterization error                                                   |
|----------------------|-------------------------------------------------------------------------------|
| Bit 1 (PF)           | Periphery failure                                                             |
| Bit 2 (BUS)          | Bus failure                                                                   |
| Bit 3 (CTRL)         | Error at the IBS master                                                       |
| Bit 4 (DETECT)       | Diagnosis routine is active                                                   |
| Bit 5 (RUN)          | Data transfer is active                                                       |
| Bit 6 (ACTIVE)       | Selected Interbus configuration ready for operation                           |
| Bit 7 (READY)        | IBS master ready for operation                                                |
| Bit 8 (BSA)          | Bus segment(s) shut down                                                      |
| Bit 9 (BASP/SYSFAIL) | Function failure of the CPU detected; outputs at the IBS set back             |
| Bit10 (RESULT)       | Negative result of a standard function                                        |
| Bit13 (WARNING)      | Defined bus waiting period exceeded                                           |
| Bit14 (QUALITY)      | Defined error density exceeded (is set at more than 20 failures per 1 million |
|                      | IBS cycles)                                                                   |

| Slave diag.     | This register contains information about the state of the optional slave     |
|-----------------|------------------------------------------------------------------------------|
| status register | interface to a hierarchical super-ordinated Interbus network. The content of |
| Master > CPU    | the register is managed by the IBS master.                                   |
| (LADDR+26)      |                                                                              |

| 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    | 7    | 6    | 5    | 4 | 3 | 2 | 1 | 0 |
|------|------|------|------|------|------|------|------|------|------|------|---|---|---|---|---|
| res. | Х | Х | Х | Х | Х |

#### Bit 0 COPY

- 1 Data between IBS master and slave interface are exchanged. The superordinated Interbus network is operating.
- 0 No data between IBS master and slave interface are exchanged. The superordinated Interbus network is not operating.

#### Bit 1 FAIL

- 1 The super-ordinated IBS network has been stopped by a bus error or alarm. No data is exchanged with the slave interface anymore. The output data of the slave interface are set to "0".
- 0 No error in the super-ordinated Interbus network.

#### Bit 2 READY-TO-COPY

- 1 The parameterization of the slave interface has been finished successful.
- 0 The slave interface has not been parameterized yet.

#### Bit 3 POWER-ON

- 1 The power supply of the slave interface is on.
- 0 The power supply of the slave interface is off.

#### Bit 4 READY

- 1 The content of the slave diagnosis status register has been initialized.
- 0 The content of the slave diagnosis status register has been not yet initialized.

Configurations register Master > CPU (LADDR+28) In this register it is monitored if the IBS master has finished a parameterization process storage initialized or from operator panel (IBS SWT CMD G4 from Phoenix Contact).

| 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1 | 0    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---|------|
| res. | Х | res. |

Bit 1: DPM-Node-Par-Ready 1

- 1 IBS master is parameterized.
- 0 IBS master is not parameterized.

If a parameterization has been stored in the parameterization memory of the IBS master, the IBS master starts the execution of the stored instructions as soon as it reaches the state READY. Bit 1 is set by the IBS master after all instructions of the parameterization memory has been processed.

**Status sysfail** This register shows a function failure of the CPU that may occur.

| register     |      | -    |      |    |      |      |      |      |      |      |      |      | -    |      |      |      |
|--------------|------|------|------|----|------|------|------|------|------|------|------|------|------|------|------|------|
| Master > CPU | 15   | 14   | 13   | 12 | 11   | 10   | 9    | 8    | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
| (LADDR+32)   | res. | res. | res. | Х  | res. |

Bit 12: 1 function failure of the CPU.

0 no function failure of the CPU.

This bit is set by the IBS master when a function failure of the CPU is announced by the interrupt IRQHOSTL. In this case, all outputs of the Interbus stations are set to "0". Additionally the diagnosis-LED "HF" is on.

## Interbus configuration

#### Overview

Initialization, diagnosis and data exchange between CPU and IBS master happens via "services" that are transferred by means of VIPA specific handling blocks.

The VIPA specific blocks may be found at www.vipa.de as downloadable library at the service area with *Downloads* > *VIPA LIB*. Please regard for <u>each</u> of the IBS master you have to create a work DB. Each IBS master occupies 34byte in the in-/output address range of the CPU.

For the transmission of instructions and parameters to an IBS slave, the "Peripherals Communication Protocol" (PCP) is at your disposal where the transfer also happens with a FC.

Your user program should have the following structure:



#### Note!

Before calling the according FCs you have to provide the work DB with parameters!

Start addressTo access the IBS1 by means of the handling blocks, for LADDR the<br/>address preset during hardware configuration is to be used. To access<br/>IBS2 you have to add to LADDR of IBS1 the value 34.

If there is no hardware configuration available, at CPU startup the IBS masters are mapped to the address area of the CPU with the following formulas:

Start address IBS1 = 256 (Slot-101)+2048 Start address IBS2 = 256 (Slot-101)+2048 + 34 **Include FCs** The deployment of the IBS master at the SPEED-Bus happens via the following handling blocks:

| Block   | Name        | Description                                                                                           |
|---------|-------------|-------------------------------------------------------------------------------------------------------|
| FC 200  | IBS_INIT    | Registration and initialization of an Interbus master at the CPU                                      |
| FC 202  | IBS_SERVICE | Service communication between CPU and IBS master                                                      |
| FC 204  | IBS_LOOP    | Slow asynchronous data communication between CPU and IBS master (waits for master release)            |
| FC 205  | IBS_CYCLE   | Fast asynchronous data communication between CPU and IBS master (waits not for master release)        |
| FC 206  | IBS_IRQ     | Synchronous data communication between CPU and IBS master with synchronization via interrupt          |
| FC 207  | IBS_PCP     | Peripherals Communication Protocol (PCP) communication for instructions and parameters for IBS slaves |
| FC 208  | IBS_DIAG    | Read diagnostic data from IBS master res. IBS slaves                                                  |
| SFC 254 | RW_SBUS     | Communication block, required for usage of the FCs                                                    |

**Installing blocks** The VIPA specific blocks may be found at www.vipa.de as downloadable library at the service area with *Downloads* > *VIPA LIB*. The library is available as packed zip-file.

If you want to use VIPA specific blocks, you have to import the library into your project.

Execute the following steps:

- Extract FX000011\_Vxxx.zip
- "Retrieve" the library
- Open library and transfer blocks into the project

Unzip Start your un-zip application with a double click on the file FX000011\_Vxxx.zip and copy the file vipa.zip to your work directory. It is not necessary to extract this file, too.

Retrieve library To retrieve your library for the SPEED7-CPUs, start the SIMATIC manager from Siemens. Open the dialog window for archive selection via **File** > *Retrieve*. Navigate to your work directory.

Choose VIPA.ZIP and click at [Open].

Select a destination folder where the blocks are to be stored. [OK] starts the extraction.

Open library and<br/>transfer blocks to<br/>projectAfter the extraction open the library.Open your project and copy the necessary blocks from the library into the<br/>directory "blocks" of your project.

Now you have access to the VIPA specific blocks via your user application.

#### Structure of the "Work DB"

You have to create a work DB for each IBS master. You may download this DB together with a sample project in the service area of ftp.vipa.de.

The following table shows the structure of the work DB. Parameters that must be set before calling the according FC are marked gray:

| Addr. | Name                     | Туре   | Comment                                                      |
|-------|--------------------------|--------|--------------------------------------------------------------|
| 0.0   | free                     | BYTE   |                                                              |
| 1.0   | free_1                   | BYTE   |                                                              |
| 2.0   | Addr_INT_Host_Mas        | DWORD  | Address of the interrupt Host>Master 0xFFF                   |
| 6.0   | Addr_INT_Mas_Host        | DWORD  | Address of the interrupt Master>Host 0xFFE                   |
| 10.0  | Addr_SSGI_Ack            | DWORD  | Address SSGI acknowledge 0xFDE                               |
| 14.0  | Addr_SSGI_Notif          | DWORD  | Address SSGI notification 0xFE0                              |
| 18.0  | Addr_SSGI_Result         | DWORD  | Address SSGI result 0xFE2                                    |
| 22.0  | Addr_SSGI_Status         | DWORD  | Address SSGI status 0xFE4                                    |
| 26.0  | Addr_SSGI_Start          | DWORD  | Address SSGI start 0xFE6                                     |
| 30.0  | reserved                 | DWORD  |                                                              |
| 34.0  | Addr_Stand_Fct_Param     | DWORD  | Address standard function parameter 0xFEA                    |
| 38.0  | Addr_Stand_Fct_Start     | DWORD  | Address standard function start 0xFEC                        |
| 42.0  | Addr_Stand_Fct_Status    | DWORD  | Address standard function status 0xFEE                       |
| 46.0  | Addr Master Diag Param   | DWORD  | Address Master diagnosis parameter 0xFF0                     |
| 50.0  | Addr Master Diag Status  | DWORD  | Address Master diagnosis status 0xFF2                        |
| 54.0  | reserved 2               | DWORD  |                                                              |
| 58.0  | Addr Slave Diag Status   | DWORD  | Address Slave diagnosis status 0xFF6                         |
| 62.0  | Addr Configuration       | DWORD  | Address Configuration 0xFF8                                  |
| 66.0  | reserved 3               | DWORD  |                                                              |
| 70.0  | Addr Status Sysfail      | DWORD  | Address status system error 0xFFC                            |
| 74.0  | SSGI Ack                 | WORD   | Register value SSGI Acknowledge                              |
| 76.0  | SSGI Notif               | WORD   | Register value SSGI Notification                             |
| 78.0  | SSGI Result              | WORD   | Register value SSGI result                                   |
| 80.0  | SSGI Status              | WORD   | Register value SSGI status                                   |
| 82.0  | SSGI Start               | WORD   | Register value SSGI start                                    |
| 84.0  | reserved 4               | WORD   |                                                              |
| 86.0  | Stand Ect Param          | WORD   | Register value standard function parameter                   |
| 88.0  | Stand Ect Start          | WORD   | Register value standard function start                       |
| 90.0  | Stand Ect Status         | WORD   | Register value standard function status                      |
| 92.0  | Master Diag Param        | WORD   | Register value Master diagnosis parameter                    |
| 94.0  | Master Diag Status       | WORD   | Register value Master diagnosis status                       |
| 96.0  | reserved 5               | WORD   |                                                              |
| 98.0  | Slave Diag Status        | WORD   | Register value Slave diagnosis status                        |
| 100.0 | Configuration            | WORD   | Register value Configuration                                 |
| 102.0 | reserved 6               | WORD   |                                                              |
| 104.0 | Status Systail           | WORD   | Register value status system error                           |
| 106.0 | Sten Counter Service     | INT    | Step counter for EC 202 "process services"                   |
| 108.0 | RET_VALSEND_Service      | WORD   | Return value of the SEC 254 at send command via EC 202       |
| 110.0 | RET_VALBECEIVE_Service   | WORD   | Return value of the SEC 254 at read command via EC 202       |
| 112.0 | Frror Byte Service       | BYTE   | From ID of EC 202                                            |
| 113.0 | Number Service Error     | BYTE   | Number of the service where the error has been detected      |
| 114.0 | Return1 Function Service | WORD   | Fror code 1 return value of the service                      |
| 116.0 | Return2 Function Service | WORD   | Error code 2 return value of the service                     |
| 118.0 | Number Services          | BYTE   | Number of services to process for FC 202                     |
| 110.0 | Processed Services       | BYTE   | Number of processed services                                 |
| 120.0 | Waiting Receipt          | WORD   | Interim storage of expected acknowledgement                  |
| 120.0 | Start Services           | RYTE   | Number of service that is 1 to process                       |
| 124.0 | Waiting Time             | S5TIME | Waiting period for acknowledgements                          |
| 124.0 | Timer No                 |        | Timer number for waiting poriod                              |
| 120.0 | Extended Diagnosia       |        | Pit 0 bit memory bit when extended discrease requested       |
| 120.0 |                          |        | Bit o bit memory bit when extended diagnosis requested       |
| 129.0 |                          | MODD   | DP. No. of output data (for EC204/EC205 if data in DD)       |
| 122.0 | Start Data In            | WORD   | Address of 1 - output byte (for EC 204/FG203 II Uald III DB) |
| 132.0 | Start Data In            | WORD   | Address of 1. Output byte (for $FC 204/205$ )                |
| 134.0 | Length Data in           | WURD   | Length of output data (for FC 204/205)                       |

continued ...

... continue work DB

| 136.0 | Start Data DPM In           | WORD     | Start address of output data in DPM (for EC 204/205)       |
|-------|-----------------------------|----------|------------------------------------------------------------|
| 138.0 | DB No Read                  | WORD     | DB-No. of input data (for EC 204/205 if data in DB)        |
| 140.0 | Start Data Out              | WORD     | Address of 1 input byte (for EC $204/205$ )                |
| 142.0 | Longth Data Out             | WORD     | Length of input data (for EC $204/205$ )                   |
| 142.0 | Start Data DBM Out          | WORD     | Start address of input data in DPM (for EC 204/205)        |
| 144.0 |                             | WORD     | Deturn value of the SEC 254 at writing data via EC 204/205 |
| 140.0 | REI_VAL_DATEN_SEND          | WORD     | Return value of the SFC 254 at writing data via FC 204/205 |
| 148.0 | REI_VAL_DATEN_REC           | WORD     | Return value of the SFC 254 at reading data via FC 204/205 |
| 150.0 | Error_Data_L_S              | WORD     | Error byte of the FC 204/FC205                             |
| 152.0 | Step_FC205                  | BYIE     | Read/write step counter I/O of FC 205                      |
| 153.0 | Additional013               | BYIE     |                                                            |
| 154.0 | Step_FC208                  | WORD     | Step counter of FC 208                                     |
| 156.0 | Order_Diag_316              | WORD     | Enter command for transmission (316 fix)                   |
| 158.0 | Parameter_Order_316         | WORD     | Number of parameters for command (316 fix)                 |
| 160.0 | Error_Service_FC208         | BYTE     | Error byte of the FC 208                                   |
| 161.0 | Control_bit_FC208           | BYTE     | Control bits of the FC 208                                 |
| 162.0 | Waiting_period_Auto         | S5TIME   | Waiting period at auto start after error                   |
| 164.0 | RET_VAL_SFC_FC208           | WORD     | Return value of the SFC 254 at read/write data via FC 208  |
| 166.0 | Timer_FC208                 | WORD     | Number additional timer (Number = Timer_No +1)             |
| 168.0 | Extension_Diagnosis_Param   | WORD     | Diagnostic addition to master diagnosis parameter register |
| 170.0 | Number_Bus_Errors           | INT      | Error counter of all bus disruptions                       |
| 172.0 | Number_IBSUSC4_Errors       | INT      | Error counter of all IBS USC4 errors                       |
| 174.0 | Number_Peripherieerrors     | INT      | Error counter of all periphery errors                      |
| 176.0 | Number_User Errors          | INT      | Error counter of all user errors                           |
| 178.0 | Order Diag 315              | WORD     | Enter command for transmission (315 fix)                   |
| 180.0 | Parameter1 Order 315        | WORD     | Number of parameters for command (315 fix)                 |
| 182.0 | Parameter2 Order 315        | WORD     | Parameters for command 315                                 |
| 184.0 | Waiting Period Detection    | S5TIME   | Waiting period for detection                               |
| 186.0 | Step Counter PCP            | INT      | Step counter of FC 207                                     |
| 188.0 | RET VALSEND PCP             | WORD     | Return value of the SEC 254 at send command via EC 207     |
| 190.0 |                             | WORD     | Return value of the SEC 254 at read command via EC 207     |
| 192.0 | Frror Byte PCP              | BYTE     | Error byte of the EC 207                                   |
| 193.0 | Number PCP Errors           | BYTE     | Number of the PCP where error has been detected            |
| 100.0 | DW Counter PCP              |          | Number of error codes returned from the PCP                |
| 108.0 | Number PCP                  | BVTE     | Number of PCP to be processed for EC 207                   |
| 100.0 | Processed PCP               | DITL     | Number of already processed DCP                            |
| 200.0 | Maiting Passint DCD         | WORD     | IN of expected acknowledgement                             |
| 200.0 | Start DCD                   |          | Number of 1. DCD to be preserved                           |
| 202.0 | Start DCD                   |          | From and a 1 Beturn value of the DCD                       |
| 204.0 |                             | WURD     |                                                            |
|       |                             |          |                                                            |
| 218.0 | Frror8 PCP                  | WORD     | Error code 8 Return value of the PCP                       |
| 220.0 | Address SEC254              | WORD     | Module address for SEC 254                                 |
| 222 0 | Additional110               | BYTE     |                                                            |
|       |                             |          |                                                            |
| :     | · · · ·                     | <u> </u> |                                                            |
| 249.0 | Additional137               | BYTE     |                                                            |
| 250.0 | Diagnosis Bus Error[1]      | BYTE     | Entry of extended diagnosis at bus error                   |
| •     |                             | •        | · ·                                                        |
|       |                             |          |                                                            |
| 299.0 | Diagnosis_Bus_Error[50]     | BYTE     |                                                            |
| 300.0 | Diagnosis_IBSUBC4_Error[1]  | BYTE     | Entry of extended diagnosis at IBS UBC4 error              |
|       |                             |          |                                                            |
| 240.0 |                             |          | · · · · · · · · · · · · · · · · · · ·                      |
| 349.0 | Diagnosis_IBSUBC4_Error[50] | BYIE     | Entry of automotor discussion of pavinterms areas          |
| 350.0 | Diagnosis_Periph_Error[1]   | BIIF     | Entry of extended diagnosis at periphery error             |
|       | · ·                         |          |                                                            |
| 300 0 | Diagnosis Perinh Error[50]  | BYTE     | · · · · · · · · · · · · · · · · · · ·                      |
| 400.0 | Diagnosis USER Error[1]     | BYTE     | Entry of extended diagnosis at user error                  |
| +00.0 |                             | DITE     | בות א טו טאנפוועפע עומצווטסוס מג עספר פווטו                |
|       |                             |          | · ·                                                        |
| · ·   |                             |          |                                                            |

**Program structure** The Interbus functions have to be called at boot of the CPU and in the cyclic program by means of conditional or absolute jumps.

You have to include the FC 200 in the boot sequence. This FC synchronizes the IBS master with the CPU and checks the structure of the connected in- and output bytes as well as the bus structure.

Via the FC 208 you may read diagnostic data of the master res. the slaves in the cyclic program. This block also sets the starting type of the IBS master after an error.

You may parameterize the IBS master via the FC 202. For this you have to transmit a DB that may contain up to 30 service instructions. Before this you must enter the number of services in the work DB under "Number\_services".

By calling FC 204 or FC 205 the asynchronous data exchange between IBS master and the CPU starts. Both FCs have the same request parameters. The FC 204 waits after the data request for the data release of the IBS master and then continues the cycle process. In opposite to FC 204, the FC 205 does not wait. As long as no data release is present, it continues the cycle processing. Thus the cycle processing of the CPU is not interrupted.

You may also synchronize the data transfer by using the FC 206 instead and call this within a HW-Interrupt-OB. Here the IBS master announces new data via an interrupt. Reading of data by the CPU is also signalized via an interrupt.



User application Your user application should have the following structure:

**Function blocks** In the following you will find a more detailed description of the function blocks that are required for the Interbus communication.

FC 200This FC synchronizes the IBS master with the CPU and checks the numberIBS\_INITof connected in- and output bytes as well as the bus structure.

| Parameter       | Declaration | Туре     | Description                      |
|-----------------|-------------|----------|----------------------------------|
| WORK_DB         | IN          | BLOCK_DB | IBS work DB                      |
| LADDR           | IN          | INT      | Logical address of IBS master    |
| MODE            | IN          | INT      | Mode for operation               |
| WAIT_TIME       | IN          | S5TIME   | Wait time for IBS Master receipt |
| TIMER_NO        | IN          | INT      | Timer No. for wait time          |
| SERVICE_DB_SEND | IN          | INT      | DB No. with services             |
| SERVICE_DB_REC  | IN          | INT      | DB No. with service receipts     |
| NO_OF_SERVICES  | IN          | WORD     | No. of services to be processed  |
| READ_DIAG       | IN          | BOOL     | Read Diagnostic data             |
| RET_VAL         | OUT         | WORD     | Return value of error number     |
| FIRST_SERVICE   | IN_OUT      | BYTE     | No of 1. service to be processed |

WORK\_DB Set the work DB for the wanted master.

LADDR Enter here the address of the corresponding IBS master.

MODE

- This parameter allows you to preset 3 modes for start-up:
  - 0 = Calculate address only
  - 1 = Calculate address and wait for Ready of the IBS master
  - 2 = Calculate address, parameterize and start IBS master
  - 3 = Calculate address and automatic start of Interbus after autoconfiguration via switch (if available)

WAIT\_TIME TIMER\_NO Here you may define a waiting period with the according timer by setting *WAIT\_TIME* and *TIMER-NO* that the CPU has to wait for a master acknowledgement after a service command.

1

#### Note!

Please regard at setting a timer-No. That always 2 sequential timers are used:

Timer 1: *TIMER\_NO*, Timer 2: *TIMER\_NO* + 1

- SERVICE\_DB\_SENDEnter the DB that contains the according service instructions via<br/>SERVICE\_DB\_RECSERVICE\_DB\_RECEnter the DB that contains the according service instructions via<br/>SERVICE\_DB\_SEND. In SERVICE\_DB\_REC the IBS master returns the<br/>receipt.<br/>More details about the structure of the service DB are to be found on the<br/>following page under "FC 202 Process service".NO\_OF\_SERVICES<br/>FIRST\_SERVICEIn NO\_OF\_SERVICES you enter the number of services that have to be<br/>processed in the service DB after the 1. service that you set in<br/>FIRST\_SERVICE.READ\_DIAGThis parameter allows you to influence the structure of a diagnosis:<br/>0 = Normal diagnosis
  - 1 = Extended diagnosis
  - RET\_VALIn case of an error, RET\_VAL may contain the following error messages:1 = Waiting period for master receipt (READY) exceeded master not ready2 = Execution of a service to process has failed

FC 202This function block allows you to transfer services to the IBS master and to<br/>react to the according acknowledgements.IBS\_SERVICEFor the Interbus master card USC4-1 from Phoenix Contact is deployed as<br/>Interbus hardware platform, please also refer to the extensive<br/>documentation (IBS SYS FW G4 UM) from Phoenix Contact for the<br/>description of the IBS services and IBS error messages.

| Name            | Declaration | Туре     | Description                      |
|-----------------|-------------|----------|----------------------------------|
| WORK_DB         | IN          | BLOCK_DB | IBS work DB                      |
| SERVICE_DB_SEND | IN          | INT      | DB No. with services             |
| SERVICE_DB_REC  | IN          | INT      | DB No. with service receipts     |
| FIRST_SERVICE   | IN          | BYTE     | No of 1. service to be processed |
| START           | IN_OUT      | BOOL     | Start bit of the function        |
| ERROR           | IN_OUT      | BOOL     | Error bit of the function        |

WORK\_DB Set the work DB for the wanted master.

SERVICE\_DB\_SEND SE SERVICE\_DB\_REC red

Enter the DB that contains the according service instructions via *SERVICE\_DB\_SEND*. In *SERVICE\_DB\_REC* the IBS master returns the receipt.

FIRST\_SERVICE Enter the position of the first service within the send DB.



#### Note!

Please regard that you have to enter the number of services that are to be transferred after *FIRST\_SERVICE* in the work DB before calling the FC 202.

Structure service DB

You may enter a max. of 30 services in one DB. Up to 2 DBs, 60 services in total, may be transferred to the IBS master at every FC call.

| DBB       | Contents                              |
|-----------|---------------------------------------|
| 0 69      | Record set 1                          |
| 70 139    | Record set 2                          |
|           |                                       |
|           | · · · · · · · · · · · · · · · · · · · |
| 2030 2099 | Record set 30                         |
| 2100      | Instruction no. 2. DB                 |

Structure record set

| DBW  | Contents                                 |
|------|------------------------------------------|
| 0    | Send length (Number of bytes to be send) |
| 1    | Code No. of service                      |
| 2    | Parameter count                          |
| 3 68 | Parameter                                |

START By setting the start bit, the services are transferred to the IBS master and started.

ERROR In case of an error, the start bit is set back and the error bit is set. Additionally, the number of the service that has been processed when the error occurred is entered in the DBB 113 of the work DB. The error code is displayed in DBB 112.

The following error codes may occur:

- 2 = Error of the master at reading data from SSGI Box
- 3 = Return code of the acknowledgement not valid
- 4 = Service could not be processed
- 5 = No acknowledgement within waiting period



#### Note!

If DBB 112 contains the error code 4, further error codes are entered into DBW 114 and 116 of the work DB.

Information about these error codes is to be found in the documentation of the services (IBS SYS FW G4 UM) from Phoenix Contact.

| FC 204    | The FC 204 serves the exchange of in- and output data between IBS         |
|-----------|---------------------------------------------------------------------------|
| IBS_LOOP  | master and CPU. This block always awaits an acknowledgement of the        |
| FC 205    | master after a data request and continues the cycle processing only after |
| IBS_CYCLE | reception.                                                                |
|           | If this block influences the cycle processing of the CPU too much, you    |
|           | should use the FC 205 Asynchr_Cycle instead. In opposite to the FC 204    |
|           | this does not wait for an acknowledgement but continues cycle processing  |

Occurring error messages are to be found after block processing in the work DB in DBW150.

| Parameter  | Declaration | Туре     | Description                                       |
|------------|-------------|----------|---------------------------------------------------|
| WORK_DB    | IN          | BLOCK_DB | IBS work DB                                       |
| RW_MODE    | IN          | INT      | Mode of R/W (0=R/W, 1=R, 2=W)                     |
| OPERATION_ | IN          | INT      | Operation mode (0=asynchr., 1=asynchr. with       |
| MODE       |             |          | consistency)                                      |
| TYP_OUT    | IN          | INT      | Data type of IBS slave out data (0=DB, 1=MB,      |
|            |             |          | 2=OB)                                             |
| TYP_IN     | IN          | INT      | Data type of IBS slave in data (0=DB, 1=MB, 2=IB) |
| START      | IN_OUT      | BOOL     | Start bit of the function                         |

WORK\_DB Set the work DB for the wanted master.

after data request.

RW\_MODE The following modes are available:

- 0 = Read input data and write output data
- 1 = Read input data only
- 2 = Write output data only

#### OPERATING\_MODE The transfer may happen with the following operating modes:

- 0 = Asynchronous data exchange without consistency lock
   In this operating mode it may happen that read res. written data is not out of the same Interbus cycle and is therefore inconsistent.
- 1 = Asynchronous data exchange with consistency lock

Here the CPU sets a bit for read/write request. As soon as the next Interbus cycle is finished and data is ready, the IBS master sets a release bit. The CPU transfers its data and signalizes the end of data transfer by setting back the request. Now the IBS master deletes the release and continues the Interbus cycle.

TYP\_OUTThis parameter defines the type of the data area where the I/O data of<br/>connected IBS slaves is stored.

The following types are available:

- 0 = DB (data block)
- 1 = MB (bit memory byte)
- 2 = I/O range of the CPU

START By setting the start bit, the FC is executed. The start is set back again in the block.

*Error message* During the execution of the block, the following errors that are stored in DBW 150 of the work DB may occur:

- 1 = Data release of the master missing read inputs
- 2 = Data release of the master missing write outputs
- 3 = Data release of the masters is not deleted

FC 206At deployment of the FC 206, the data transfer of the in- and output dataIBS\_IRQbetween CPU and IBS master is controlled via interrupts.As soon as the IBS master has provided its data, it initializes an interrupt.<br/>The CPU transfers its data and also signalizes the end of the data transfer<br/>via an interrupt. Now the IBS master continues the Interbus cycle.

| Parameter | Declaration | Туре     | Description                                        |
|-----------|-------------|----------|----------------------------------------------------|
| WORK_DB   | IN          | BLOCK_DB | IBS work DB                                        |
| RW_MODE   | IN          | INT      | Mode of R/W (0=R/W, 1=R, 2=W)                      |
| TYP_OUT   | IN          | INT      | Data type of IBS slave out data (0=DB, 1=MB, 2=OB) |
| TYP_IN    | IN          | INT      | Data type of IBS slave in data (0=DB, 1=MB, 2=IB)  |

WORK\_DB Set the work DB for the wanted master.

RW\_MODE The following modes are available:

- 0 = Read input data and write output data
- 1 = Read input data only
- 2 = Write output data only

TYP\_OUTThis parameter defines the type of the data area where the I/O data of<br/>connected IBS slaves is stored.

The following types are available:

- 0 = DB (data block)
- 1 = MB (bit memory byte)
- 2 = I/O range of the CPU

FC 207This function block allows you to transfer PCP services to the IBS masterIBS\_PCPand to react to the according acknowledgements. The PeripheralsCommunication Protocol (PCP) serves the transmission of instructions and<br/>parameters to connected slaves and the reception of acknowledgements<br/>and data of the slaves.

Information about the services is to be found in the documentation of the services, available via our application department.

| Parameter       | Declaration | Туре     | Description                      |
|-----------------|-------------|----------|----------------------------------|
| WORK_DB         | IN          | BLOCK_DB | IBS work DB                      |
| SERVICE_DB_SEND | IN          | INT      | DB No. with services             |
| SERVICE_DB_REC  | IN          | INT      | DB No. with service receipts     |
| FIRST_SERVICE   | IN          | BYTE     | No of 1. service to be processed |
| START           | IN_OUT      | BOOL     | Start bit of the function        |
| ERROR           | IN_OUT      | BOOL     | Error bit of the function        |

WORK\_DB Set the work DB for the wanted master.

SERVICE\_DB\_SENDEnter the DB that contains the according PCP service instructions viaSERVICE\_DB\_RECSERVICE\_DB\_SEND. In SERVICE\_DB\_REC the slaves return the receipt.

FIRST\_SERVICE Enter the position of the first PCP service within the send.



#### Note!

Please regard that you have to enter the number of services that are to be transferred after *FIRST\_SERVICE* in the work DB before calling the FC 207.

Structure service DB

You may enter a max. of 30 PCP services in one DB. Up to 2 DBs, 60 PCP services in total, may be transferred to the IBS master at every FC call.

| DBB       | Content               |
|-----------|-----------------------|
| 0 69      | Record set 1          |
| 70 139    | Record set 2          |
|           |                       |
| •         | · .                   |
| 2030 2099 | Record set 30         |
| 2100      | Sequence no. of 2. DB |

#### Structure record set

| DBW  | Content                                  |
|------|------------------------------------------|
| 0    | Send length (Number of bytes to be send) |
| 1    | Code No. of PCP service                  |
| 2    | Parameter count                          |
| 3 68 | Parameter                                |

START By setting the start bit, the PCP services are transferred to the IBS master and started.

ERROR In case of an error, the start bit is set back and the error bit is set. Additionally, the number of the PCP service that has been processed when the error occurred is entered in the DBB 193. The following error codes may be entered into DBB 192:

- 2 = Error of the master at reading data from SSGI Box
- 3 = Return code of the acknowledgement not valid
- 4 = Service could not be processed
- 5 = No acknowledgement within waiting period



#### Note!

If Error contains the error code 4, further error codes are entered into DBW 194 and 196 of the work DB.

Information about these error codes is to be found in the documentation of the error codes, available via our application department.

| FC 208   | Via this function block you may read diagnostic data from the master res. |
|----------|---------------------------------------------------------------------------|
| IBS_DIAG | slave in case of an Interbus break-down. Here you may also define the     |
|          | reboot operating mode of the IBS master after break-down.                 |

| Parameter        | Declaration | Туре     | Description                  |
|------------------|-------------|----------|------------------------------|
| WORK_DB          | IN          | BLOCK_DB | IBS work DB                  |
| ACTIVATE         | IN          | INT      | Manual error receipt         |
| AUTO_START       | IN          | INT      | Automatic error receipt      |
| RUN              | OUT         | BYTE     | IBS at status RUN            |
| PERIPHERAL_ERROR | OUT         | BOOL     | Error at periphery           |
| BUS_QUALITY      | OUT         | BOOL     | Sporadic bus errors occurred |
| DETECTION        | OUT         | BOOL     | Bus error is searched        |
| BUSY_STATE       | OUT         | BOOL     | Diagnostic function is busy  |

WORK\_DB Set the work DB for the wanted master.

ACTIVATE The *ACTIVATE* transmission parameter of the type Boolean that you may control for example via an external caliper (if available), allows you to reboot the IBS master by setting (push button).

By setting of auto-start, the IBS master reboots automatically after error recovering. *AUTO-START* has always preference before *ACTIVATE*.

| RUN                  | <ul> <li>This parameter shows the status of the IBS master:</li> <li>0 = IBS master is in STOP</li> <li>1 = IBS master is in RUN</li> </ul>                                                                                                                         |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PERIPHERAL_<br>ERROR | If an periphery error occurs, the IBS master announces $PF = 1$ . At $PF = 0$ no periphery error occurred.<br>In case of an error you will see the number of the causing slave in the work DB starting with 1.                                                      |
| BUS_QUALITY          | This parameter displays information about the transfer quality within the<br>Interbus. As soon as the bit is set by the IBS master, some single<br>transmission interferences have occurred. Please check the transfer routes<br>with according diagnosis software. |
| DETECTION            | The parameter <i>DETECTION</i> is set by the IBS master when the internal error detection is running. When the error detection is finished, <i>DETECTION</i> is set back again.                                                                                     |
| BUSY_STATE           | When a diagnosis is executed within the diagnosis block, <i>BUSY_STATE</i> is set. As soon as diagnosis data are available, the block sets <i>BUSY_STATE</i> back again.                                                                                            |

## **Diagnostics**

General

For diagnostics of the operating and fault conditions each Interbus master has a RJ45 jack to connect the VIPA diagnostics device 342-0IA01. The device has a multi line LCD display for display and a key field for menuassisted service.

The hardware platform of the diagnostics device (USC/4-DIAG-L) comes from Phoenix Contact as like the IBS hardware platform of the master (USC4-2). In the following the single components are described only briefly. In the "Diagnostics guide" of Phoenix Contact a detailed description of the diagnostics possibilities may be found.



# Connect the diagnostics device



The diagnostics device is directly supplied by the RJ45 jack of the IBS master and is ready for use after connection.

#### Attention!

Please consider the sufficient grounding when connecting the diagnostics device. Hardware-caused there is the risk to come in contact to a pin of the plug while the diagnostics device is connected. This could damage the device by an electrostatic discharge.

**LCD Display** 

The diagnostic display consists of the following components:

- 3 main lines to display operating states, addresses and data.
- 16 status segments on the left side of the display for binary representation of input and output data.
- CPU STOP status indicator (Arrow is displayed).
- Red (error) or green (normal operation) background illumination, depending on the operating state of the bus



| [1] | FAIL                | . Indicates that an error has occurred and provid<br>information about the error type.                                          |                                                                                                                |
|-----|---------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|     |                     | CTRI                                                                                                                            | Controller error                                                                                               |
|     |                     | RBUS                                                                                                                            | Remote bus error                                                                                               |
|     |                     |                                                                                                                                 | Local bus error                                                                                                |
|     |                     |                                                                                                                                 | Coporal bus error                                                                                              |
|     |                     |                                                                                                                                 | General bus error                                                                                              |
|     |                     |                                                                                                                                 | Error at the bugoing interface                                                                                 |
|     |                     |                                                                                                                                 | Error at the branching interface                                                                               |
|     |                     | DEV                                                                                                                             | Device error                                                                                                   |
|     |                     | PF                                                                                                                              | Peripheral fault                                                                                               |
|     | MODE                | When MODE selected.                                                                                                             | active, further menu items may be                                                                              |
|     | MONI                | Indicates that                                                                                                                  | t monitor mode is activated.                                                                                   |
|     | HEX                 | The value in decimal nota activated, the notation.                                                                              | the 1. main line is displayed in hexa-<br>tion. If the HEX segment is not<br>e value is displayed in decimal   |
| [2] | PARA                | The displaye                                                                                                                    | d value is a parameter of a message.                                                                           |
|     | CODE                | The displaye                                                                                                                    | d value represents a code.                                                                                     |
|     | SEG.POS             | The displaye<br>(bus segmer                                                                                                     | d value is a device number<br>at and position).                                                                |
|     | HEX                 | The value in hexadecimal activated, the notation.                                                                               | the 2. main line is displayed in<br>notation. If the HEX segment is not<br>e value is displayed in decimal     |
| [3] | VALUE               | The displaye                                                                                                                    | d number is a value.                                                                                           |
|     | CODE                | The displaye                                                                                                                    | d value represents a code.                                                                                     |
|     | HIGH                | The displaye<br>32bit value.                                                                                                    | d number is a high-order word of a                                                                             |
|     | LOW                 | The displaye 32bit value.                                                                                                       | d number is a low-order word of a                                                                              |
|     | %                   | The displaye                                                                                                                    | d number is a percentage term.                                                                                 |
|     | HEX                 | The value in hexadecimal activated, the notation.                                                                               | the 3. main line is displayed in<br>notation. If the HEX segment is not<br>a value is displayed in decimal     |
| [4] | RUN                 | Indicates the<br>master:<br>Off: Interbus<br>Flashes: Inter<br>On: Interbus                                                     | e current operating state of the IBS<br>at state READY or BOOT<br>prous at state ACTIVE<br>at state RUN        |
|     | FAIL                | Active in the                                                                                                                   | event of controller, user or bus errors.                                                                       |
|     | BSA                 | (Bus Segme                                                                                                                      | nt Aborted)                                                                                                    |
|     |                     | Active when inactive whe                                                                                                        | a bus segment is switched off and nall segments are switched on again.                                         |
|     | PF                  | ( <b>P</b> eripheral <b>F</b><br>Active when                                                                                    | ault)<br>a device indicates a peripheral fault.                                                                |
| [5] | CPU-STOP<br>status  | If the superir<br>arrow appea<br>pointing to th                                                                                 | nposed CPU is in STOP state, an<br>rs in the bottom line of the display<br>le "STOP" label of the front panel. |
| [6] | Status-<br>segments | The 16 status segments for the binary representation of in and output words, are indicated, if an appropriate menu were opened. |                                                                                                                |

### Keypad

The keypad enables menu-driven operation of the diagnostics display using the arrow keys.

| ST |       |       |
|----|-------|-------|
|    | 0     | ESC   |
| •• | ENTER | ••    |
|    | •     | RESET |

| Key              | Description                                                                                 |
|------------------|---------------------------------------------------------------------------------------------|
|                  | Go up                                                                                       |
| $\mathbf{ abla}$ | Go down                                                                                     |
|                  | Selection of a menu item or address                                                         |
|                  | Selection of a menu item or address                                                         |
| ENTER            | Confirm selection                                                                           |
| ESC              | Exit menu item or switch to the next level up                                               |
| RESET            | This button is reserved for internal functions and is deactivated at diagnostics operation. |

| Selecting a<br>menu item | Different<br>a menu le<br>selected r | menu items may be selected on the display. You can move within evel using the $\blacktriangleleft$ $\blacktriangleright$ . To jump to the next level down, confirm the menu item by pressing ENTER.                                                                                                            |
|--------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | another le<br>items will             | ently selected menu item is always shown in the 1. line. If there is<br>evel under this menu item, the name of one of the available menu<br>flash in the 2. line. Press ESC to return to the previous level.                                                                                                   |
| Menu structure           | To access press ►.                   | s the MODE and MONI menu items from the standard view,                                                                                                                                                                                                                                                         |
|                          | MODE                                 | Here you may get information about the current bus configuration<br>and status. Statistical data about the state of the bus system can<br>also be requested e.g., the error frequency of specific devices.<br>Further general information such as the firmware version or the<br>serial number are centralized |
|                          | MONI                                 | Via the MONI item the states of inputs and outputs may be displayed. This monitor function is adapted to the addressing syntax of the CPU.                                                                                                                                                                     |

## Firmware update

**Overview** There is the possibility to execute a firmware update of the CP 342 among others via the SPPED7 CPU by means of a MMC.

So a firmware file may be recognized and assigned with startup, a pkg file name is reserved for each updateable component and hardware release. This file name begins with "px" and differs in a number with six digits.

The pkg file name may be found at a label right down the front flap of the module.

Latest firmware at www.vipa.de The latest firmware versions may be found in the service area at www.vipa.de. For example the following file is necessary for the firmware update of the CP 341 with hardware release 1: Px000102\_V....zip.



#### Attention!

When installing a new firmware you have to be extremely careful. Under certain circumstances you may destroy the CP, for example if the voltage supply is interrupted during transfer or if the firmware file is defective.

In this case, please call the VIPA-Hotline!

Please regard that the version of the update firmware has to be different from the existing firmware otherwise no update is executed.

| Display the<br>Firmware version<br>of the SPEED7<br>system via Web<br>Site | The CPU has an integrated website that monitors information about firmware version of the SPEED7 components. The Ethernet PG/OP channel provides the access to this web site.<br>To activate the PG/OP channel you have to enter according IP parameters. This can be made in Siemens SIMATIC manager either by a hardware configuration, loaded by MMC respectively MPI or via Ethernet by means of the MAC address with <b>PLC</b> > <i>Assign Ethernet Address</i> .<br>After that you may access the PG/OP channel with a web browser via the IP address of the project engineering. More detailed information may be found in the CPU manual at "Access to Ethernet PG/OP channel and |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            | found in the CPU manual at "Access to Ethernet PG/OP channel and website".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Load firmware and transfer it to MMC | ٠ | Go to www.vipa.de.                              |
|--------------------------------------|---|-------------------------------------------------|
|                                      | ٠ | Click on Service > Download > Firmware Updates. |

- Click on "Firmware for System 300S"
- Choose the according CP modules and download the firmware Px.....zip to your PC.
- Extract the zip-file and copy the extracted file to your MMC. Following this approach, transfer all wanted firmware files to your MMC.



#### Attention!

With a firmware update an overall reset is automatically executed. If your program is only available in the load memory of the CPU it is deleted! Save your program before executing a firmware update!

Transfer firmware from MMC to the CP

- 1. Get the RUN-STOP lever of your CPU in position STOP. Turn off the voltage supply. Plug the MMC with the firmware files into the CPU. Please take care of the correct plug-in direction of the MMC. Turn on the voltage supply.
- 2. After a short boot-up time, the alternate blinking of the CPU-LEDs SF and FRCE shows that at least a more current firmware file was found on the MMC.
- 3. You start the transfer of the firmware to the CP as soon as you tip the RUN/STOP lever downwards to MRES within 10s. Now every CP 342-2IA71 at the SPEED-Bus gets a firmware update.
- 4. During the update process at the CPU the LEDs SF and FRCE are alternately blinking and the MCC LED is on. Please regard the update procedure is exclusively indicated by the LEDs of the CPU.
- 5. The update is successful finished when the LEDs PWR, STOP, SF, FRCE and MCC of the CPU get on. If they are blinking fast, an error has occurred.
- 6. Turn Power OFF and ON. Now your CP is ready for operation.



#### Note!

More about firmware update may be found in the manual of the SPEED7 CPU at chapter "Deployment CPU ..." at "Firmware update".

## Example

| Overview              | The following sample shall illustrate a communication between a SPEED-<br>Bus-IBS master and a connected IBS slave.                                                                                                                                                                                |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                       | You may find the example at ftp.vipa.de at <i>support/demo_files</i> as "300S-Demo-Interbus.zip". After the download you may load the zip file as project into the SIMATIC Manager from Siemens via <b>File</b> > <i>De-archivate</i> .                                                            |  |  |  |
| Properties            | The sample project provides the following features:                                                                                                                                                                                                                                                |  |  |  |
|                       | <ul> <li>Appropriate for deployment at a VIPA IBS master CP.</li> </ul>                                                                                                                                                                                                                            |  |  |  |
|                       | • The addressing of the IBS master happens automatically (no hardware configuration). The IBS master must be at the 1. slot at the SPEED-Bus for it works with module address 2048. Otherwise you have to adjust the <i>LADDR</i> parameter for the FC 202 accordingly.                            |  |  |  |
|                       | • For the IBS configuration is newly detected at reboot, the number of connected IBS slaves is irrelevant.                                                                                                                                                                                         |  |  |  |
|                       | • During the hardware configuration the Ethernet PG/OP channel is assigned to the IP address 172.16.129.71. With this IP address you may access the CPU online via the Ethernet PG/OP channel. Please consider to adjust the IP address accordingly if you are working with another number circle. |  |  |  |
| Program structure     | For the program has comment at according lines, here you will only find the basic structure.                                                                                                                                                                                                       |  |  |  |
| OB 100<br>Boot/Reboot | <ul> <li>Presetting of services for automatic start.</li> <li>Service 1303h Stop bus</li> </ul>                                                                                                                                                                                                    |  |  |  |
|                       | Service 0710h Read configuration automatically                                                                                                                                                                                                                                                     |  |  |  |
|                       | Call function for initialization of the master                                                                                                                                                                                                                                                     |  |  |  |
|                       | Set control bit for cyclical reading                                                                                                                                                                                                                                                               |  |  |  |
|                       | <ul> <li>Set control bit for automatic start after error</li> </ul>                                                                                                                                                                                                                                |  |  |  |
| OB 1                  | Call FC 1000                                                                                                                                                                                                                                                                                       |  |  |  |
| OB 40                 | Call sample at interrupt controlled data transfer                                                                                                                                                                                                                                                  |  |  |  |

| FC 1000 master processing | <ul> <li>Read diagnosis</li> <li>Detect status IBS master (RUN/STOP)</li> <li>Call the function for service processing</li> <li>Preset data in work DB (DB 120) for read and write accesses of the IBS I/Os</li> <li>Read and write IBS I/Os</li> <li>Initialize again read and write</li> </ul> |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DB 10, UDT1, DB 11        | For every service, an entry of the type "service" is to be found in <i>DB 10</i> . The data type of "service" is defined under <i>UDT1</i> .                                                                                                                                                     |
| DB 11                     | Acknowledgement DB is the DB 11.                                                                                                                                                                                                                                                                 |
| DB 110                    | If you want to transfer more than 30 services, you may set a pointer to another service DB in DB 10 (here DB 110).<br>This is monitored in OB 100.                                                                                                                                               |
| SFC 254                   | The SFC 254 is required for the communication between CPU and IBS master. The call of the SFC 254 happens from IBS-FCs (FC 200 FC 208).                                                                                                                                                          |
| SFC 1                     | The system block SFC 1 is automatically created when you call the FC 208 "Diagnostic".                                                                                                                                                                                                           |
## Appendix

## A Index

## Α

| Addressing                       |
|----------------------------------|
| CP4-8                            |
| SPEED-Bus 4-4                    |
| Assembly 2-1, 2-4                |
| CPU 31xS2-4                      |
| Direction2-2                     |
| SPEED-Bus2-5                     |
| В                                |
| Basics 1-1                       |
| С                                |
| Cabling2-8                       |
| Front connectors2-10             |
| Compatibility 1-6                |
| Configuration 4-15               |
| Core cross-section 1-6           |
| D                                |
| Deployment 4-1                   |
| Diagnostics 4-28                 |
| Device                           |
| Jack                             |
| E                                |
| EMC                              |
| Basic rules2-13                  |
| Environmental conditions 1-6     |
| Example 4-33                     |
| F                                |
| Fast introduction 4-2            |
| FCs                              |
| Embedding4-16                    |
| Firmware                         |
| Info by Web page4-31             |
| Update 4-31                      |
| G                                |
| GSD file include                 |
| Н                                |
| Hardware configuration           |
| 1                                |
|                                  |
| Installation quidelines 2-1 2-12 |

| Basics1                    | -7 |
|----------------------------|----|
| Cabling 3                  | -5 |
| Data cycle1                | -8 |
| ID code 1                  | -8 |
| ID cycle1                  | -8 |
| ID length 1                | -8 |
| Operating modes1           | -8 |
| Interfaces                 |    |
| RJ45 diagnostics 3         | -4 |
| RS422 Interbus3            | -5 |
| Interference influences2-  | 12 |
| Isolation of conductors2-7 | 14 |
| L                          |    |
| LADDR4-                    | 15 |
| LEDs3                      | -4 |
| 0                          |    |
| Overview                   |    |
| Register allocation 4      | -9 |
| System 300 1               | -3 |
| Р                          |    |
| Parameters4                | -8 |
| pkg file4-3                | 31 |
| Power supply1-6, 3         | -4 |
| Program structure4-7       | 19 |
| R                          |    |
| Register allocation4       | -9 |
| S                          |    |
| Safety Information1        | -2 |
| Service DB4-2              | 22 |
| SPEED-Bus1                 | -5 |
| Assembly2                  | -5 |
| GSD file include4          | -5 |
| Structure3                 | -3 |
| Т                          |    |
| Technical Data3            | -6 |
| U                          |    |
| User program4              | -3 |
|                            |    |
| W                          |    |

M.Stich